红外与激光工程, 2018, 47 (2): 0206005, 网络出版: 2018-04-26   

固体微片激光回馈技术在远程振动测量中的研究

Study of solid-state microchip laser feedback technology in remote vibration measurement
作者单位
1 贵州大学 机械工程学院, 贵州 贵阳 550025
2 贵州大学 贵州省光电子技术及应用重点实验室, 贵州 贵阳 550025
摘要
激光回馈技术具有极高的测量灵敏度, 在振动测量中具有突出的优势。在激光回馈理论和技术的基础上, 研究并提出了基于激光回馈技术的远程振动测量方法, 构建了完整的固体微片激光远程振动测量系统, 详细分析了系统各个部分的基本结构及其工作原理, 并在实验中很好地实现了不同频率振动信号的测量及恢复。该研究将振动测量的工作距离提高到25 m以上, 实现了远程微振动的非接触测量, 拓展了激光回馈技术的应用。实验系统具有较大的振幅与频率测量范围, 在振动测量方面具有突出的性能, 能够适用于多种场合和目标的振动测量需求。
Abstract
The technology of laser feedback has ultra high sensitivity and great advantages in vibration measurement. Based on laser feedback theory and technologies, method of remote vibration measurement with laser feedback technologies was studied and presented. The remote vibration measurement system based on microchip solid-state laser feedback was built, the structure and working principles of each parts of the system were studied in detail. The vibration signals of different frequencies in experiments were measured and restored. The working distance of vibration measurement was improved to 25 meters, realizing non-contact measurement of remote vibration. The application of laser feedback technology was expanded. The experimental system has superior performance and large range of amplitudes and frequencies in vibration measurement, and it can be applied in various occasions and can meet various target measurement requirements.
参考文献

[1] 张书练.激光回馈技术及发展[J].激光与光电子学进展, 2007, 44(11): 65-71.

    Zhang Shulian. The laser feedback technology and development[J]. Laser & Optoelectronics Progress, 2007, 44(11): 65-71. (in Chinese)

[2] Lacot E, Day R, Stoeckel F. Coherent laser detection by frequency-shifted optical feedback[J]. Physical Review A, 2001, 64 (4): 043815.1-043815.11.

[3] Silvano Donati. Developing self-mixing interferometry for instrumentation and measurements[J]. Laser Photonics Rev, 2012, 3(6): 393-417.

[4] Thomas Taimre, Milan Nikoli′c, Karl Bertling, et al. Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing[J]. Advance in Optics and Photonics,2015, 7(3): 570-631.

[5] Russell Kliese, Thomas Taimre, Bakar A Ashrif A, et al. Solving self-mixing equations for arbitrary feedback levels: a concise algorithm[J]. Applied Optics, 2014, 53(17): 3723-3736.

[6] Takaaki Shibata, Shigenobu Shinohara, Hiroaki Ikeda, et al. Laser speckle velocimeter using self-mixing laser diode[J]. Transactions on Instrumentation and Measurement, 1996, 45 (2): 499-503.

[7] Kazutaka Abe, Kenju Otsuka, Ko Jing-Yuan. Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction[J]. New Journal of Physics, 2003, 5: 8.1-8.9.

[8] 张书练.正交偏振激光原理[M]. 北京:清华大学出版社, 2005: 99-209.

    Zhang Shulian. Principle of Orthogonally Polarized Laser [M]. Beijing: Tsinghua University Press, 2005: 99-209. (in Chinese)

[9] Zhang S, Holzapfel W. Orthogonal Polarization in Lasers: Physical Phenomena and Engineering Applications[M]. Berlin: John Wiley & Sons, 2013: 311-426.

[10] 张书练,费力刚,刘维新. 激光回馈纳米级宽度干涉条纹[J].红外与激光工程, 2008, 37(2): 208-211.

    Zhang Shulian, Fei Ligang, Liu Weixin. Nano-width interference fringes of laser feedback[J]. Infrared and Laser Engineering, 2008, 37(2): 208-211. (in Chinese)

[11] Zhang Shaohui, Zhang Shulian, Tan Yidong, et al. Self-mixing interferometry with mutual independent orthogonal polarized light[J]. Optics Letters, 2016, 41(4): 844-846.

[12] Kenju Otsuka, Kazutaka Abe, Jing-Yuan Ko, et al. Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser[J]. Optics Letters, 2002, 27 (15):1339-1341.

[13] 郭波, 秦水介, 谈宜东. 基于Nd:VO4激光回馈效应的远距离振动测量研究[J]. 光电子·激光, 2016, 27(3): 298-302.

    Guo Bo, Qin Shuijie, Tan Yidong. Remote vibration measurement based on Nd:VO4 laser feedback system[J]. Journal of Optoelectronics·Laser, 2016, 27(3): 298-302. (in Chinese)

[14] Tan Yidong, Zhang Song, Ren Zhou, et al. Real-time liquid evaporation rate measurement based on a microchip laser feedback interferometer[J]. Chin Phys Lett, 2013, 30(12): 124202.1-124202.3

吴鹏, 秦水介. 固体微片激光回馈技术在远程振动测量中的研究[J]. 红外与激光工程, 2018, 47(2): 0206005. Wu Peng, Qin Shuijie. Study of solid-state microchip laser feedback technology in remote vibration measurement[J]. Infrared and Laser Engineering, 2018, 47(2): 0206005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!