强激光与粒子束, 2016, 28 (3): 033008, 网络出版: 2016-03-28  

S波段分离腔振荡器的数值模拟与设计

Design and simulation for S-band split-cavity oscillator
作者单位
中国工程物理研究院 应用电子学研究所, 高功率微波技术重点实验室, 四川 绵阳 621900
摘要
通过粒子模拟的方法设计了分离腔振荡器(SCO),并建立了基于爆炸发射的阴极模型,对带有真实二极管结构的SCO进行了整体的粒子模拟研究。典型的数值模拟结果为:在二极管电压为495 kV,电流为3.93 kA时,输出高功率微波的功率为640 MW,微波频率为2.85 GHz,功率效率为33.0%。同时,还研究了二极管输入电压幅度及波形、阴-阳极间距、阴极半径等参数对SCO输出高功率微波特性的影响,初步研究结果表明:除了栅网的通过率,SCO对二极管阻抗、阴极半径等参数也比较敏感,对应一定的二极管阻抗,需有一个最佳的电压值与之匹配;三角波电压波形会明显降低SCO的功率效率。
Abstract
By resorting to numerical simulation, an S-band split-cavity oscillator (SCO) is designed. The cathode model of explosive emission is built, and the SCO with a real diode is simulated. The typical simulation results are that when the electron beam voltage is 495 kV and the current is about 3.93 kA, an SCO can generate about 640 MW of HPM with a frequency of 2.85 GHz. The power efficiency is about 33.0%. At the same time, we also investigate the influence of the input voltage amplitude and its waveform, the anode-cathode gap and the cathode radius on the output high power microwave of the SCO. The preliminary results show that besides the rate of the grid, the diode impedance and the cathode radius have obvious influence on the output microwave of the SCO, the diode impedance is needed to match the voltage, and the triangle voltage will decrease the power efficiency of the SCO obviously.
参考文献

[1] Marder B, Clark M, Bacon L, et al. The split-cavity oscillator: a high-power E-beam modulator and microwave source[J]. IEEE Trans Plasma Science, 1992, 20(3): 312-331.

[2] Lemke R, Clark M, Marder B. Theoretical and experimental investigation of a method for increasing the output power of a microwave tube based on the split-cavity oscillator[J]. J Appl Phys, 1994, 75(10): 5423-5432.

[3] Lemke R W. Dispersion analysis of symmetric transverse magnetic modes in a split cavity oscillator[J]. J Appl Phys, 1992, 72(9):4422-4428.

[4] Miller R B, Mccullough W F, Lancaster K T, et al. Super-reltron theory and experiments[J]. EEE Trans Plasma Science, 1992, 20(3):332-343.

[5] 陈代兵, 文杰, 施美友, 等. 磁绝缘线振荡器脉宽及效率与三角波电压关系[J]. 强激光与粒子束, 2014, 26: 083010. (Chen Daibing, Wen Jie, Shi Meiyou, et al. Relation between microwave width (power efficiency) and input voltage for a magnetically insulated transmission line oscillator. High Power Laser and Particle Beams, 2014, 26: 083010)

[6] 黄华, 刘振帮, 孟凡宝. 等. 宽谱窄脉冲高功率微波产生的初步研究[J]. 强激光与粒子束, 2015, 27: 063001. (Huang Hua, Liu Zhenbang, Meng Fanbao, et al. Initial investigation on wide spectrum short pulse generation of high power microwave. High Power Laser and Particle Beams, 27: 063001)

[7] 宋法伦, 甘延青, 张勇, 等. 低阻抗紧凑型Marx直接驱动高功率微波源[J]. 强激光与粒子束, 2013, 25(s0): 177-180. (Song Falun, Gan Yanqing, Zhang Yong, et al. Compact low impedance Marx generator for high power microwave applications. High Power Laser and Particle Beams, 2013, 25(s0): 177-180)

[8] 减杰锋, 刘庆想, 朱静, 等. 径向三腔渡越时间振荡器数值模拟[J]. 强激光与粒子束, 2008, 20(3): 473-476. (Zang Jiefeng, Liu Qingxiang, et al. Numerical simulation of radial three-cavity transit time oscillator. High Power Laser and Particle Beams, 2008, 20(3): 473-476)

[9] Fan Zhikai, Liu Qingxiang, Chen Daibing, et al. Theoretical and experimental investigations of the C-band TTTO[J]. Science in China Ser G: Physics, Mechanics & Astronomy, 2004, 47(3): 310-329.

[10] 陈代兵, 何唬, 刘庆想. X波段五腔渡越管振荡器的高频特性研究[J]. 强激光与粒子束, 2003, 15(10): 1003-1006.(Chen Daibing, He Hu, Liu Qingxiang. High frequency characteristics investigation of X-band five-unit transit time tube oscillator. High Power Laser and Particle Beams, 2003, 15(10): 1003-1006)

陈代兵, 黄华, 于爱民, 何琥, 张勇. S波段分离腔振荡器的数值模拟与设计[J]. 强激光与粒子束, 2016, 28(3): 033008. Chen Daibing, Huang Hua, Yu Aimin, He Hu, Zhang Yong. Design and simulation for S-band split-cavity oscillator[J]. High Power Laser and Particle Beams, 2016, 28(3): 033008.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!