激光与光电子学进展, 2016, 53 (9): 090002, 网络出版: 2016-09-14   

1.7 μm波段光纤光源研究进展及其应用 下载: 1267次

Fiber Light Source at 1.7 μm Waveband and Its Applications
作者单位
1 长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022
2 长春理工大学理学院, 吉林 长春 130022
3 长春理工大学光电工程学院, 吉林 长春 130022
4 长春理工大学材料科学与工程学院, 吉林 长春 130022
引用该论文

张岩, 张鹏, 刘鹏, 韩科选, 都权力, 王天枢, 张立中, 佟首峰, 姜会林. 1.7 μm波段光纤光源研究进展及其应用[J]. 激光与光电子学进展, 2016, 53(9): 090002.

Zhang Yan, Zhang Peng, Liu Peng, Han Kexuan, Du Quanli, Wang Tianshu, Zhang Lizhong, Tong Shoufeng, Jiang Huilin. Fiber Light Source at 1.7 μm Waveband and Its Applications[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090002.

参考文献

[1] 李平雪, 杨春, 姚毅飞, 等. 980 nm光纤激光器的研究进展[J]. 激光与光电子学进展, 2013, 50(10): 100001.

    Li Pingxue, Yang Chun, Yao Yifei, et al. Research progress of 980 nm fiber laser[J]. Laser & Optoelectronics Progress, 2013, 50(10): 100001.

[2] Lin Z R, Liu C K, Keiser G. Tunable dual-wavelength erbium-doped fiber ring laser covering both C-band and L-band for high-speed communications[J]. Optik-International Journal for Light and Electron Optics, 2012, 123(1): 46-48.

[3] Royon R, Lhermite J, Sarger L, et al. High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm[J]. Optics Express, 2013, 21(11): 13818-13823.

[4] Guiraud G, Dubrasquet R, Boullet J, et al. Low noise high power continuous wave MOPA ytterbium doped fiber lasers at 1064 nm[C]. The European Conference on Lasers and Electro-Optics, 2015: CJ_11_1.

[5] 孙国勇, 杨敬, 瞿荣辉, 等. 多波长掺铒光纤激光器的研究进展[J]. 激光与光电子学进展, 2004, 41(9): 19-22.

    Sun Guoyong, Yang Jing, Qu Ronghui, et al. Research and progress of multiwavelength erbium-doped fiber laser[J]. Laser & Optoelectronics Progress, 2004, 41(9): 19-22.

[6] 韩凯, 马阎星, 王小林, 等. 高功率掺铥光纤激光的研究进展[J]. 激光与光电子学进展, 2010, 47(10): 101406.

    Han Kai, Ma Yanxing, Wang Xiaolin, et al. Progress of high power Tm-doped fiber laser[J]. Laser & Optoelectronics Progress, 2010, 47(10): 101406.

[7] Bashkatov A N, Genina E A, Kochubey V I, et al. Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm[J]. Optics and Spectroscopy, 2005, 99(5): 836-842.

[8] Ishida S, Nishizawa N.Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region[J]. Biomedical Optics Express, 2012, 3(2): 282-294.

[9] Tanaka M, Hirano M, Murashima K, et al. 1.7-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel[J]. Optics Express, 2015, 23(5): 6645-6655.

[10] Hasegawa T, Sogawa I. A near infrared angioscope visualizing lipid within arterial vessel wall based on multi-spectral image in 1.7 μm wavelength band[C]. SPIE, 2013, 8575: 857506.

[11] Tanaka M, Okuno T, Obi H, et al. Performance improvement by a broadband super-luminescent diode light source in 1.7-μm spectroscopic spectral-domain optical coherence tomography for lipid distribution imaging in a coronary artery[C]. SPIE, 2014, 8926: 89262T.

[12] Horton N G, Wang K, Kobat D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3): 205-209.

[13] Nguyen T N, Kieu K, Churin D, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm[J]. IEEE Photonics Technology Letters, 2013, 25(19): 1893-1896.

[14] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.

[15] Workman J, Jr, Weyer L. Practical guide and spectral atlas for interpretive near-infrared spectroscopy[M]. CRC Press, 2012.

[16] Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy[C]. 19th Optoelectronics and Communications Conference (OECC) and the 39th Australian Conference on Optical Fibre Technology(ACOFT), Engineers Australia, 2014: 410-411.

[17] Quimby R S, Shaw L B, Sanghera J S, et al. Modeling of cascade lasing in Dychalcogenide glass fiber laser with efficient output at 4.5 μm[J]. IEEE Photonics Technology Letters, 2008, 20(2): 123-125.

[18] Quimby R S, Saad M. Dyfluoroindate fiber laser at 4.5 μm with cascade lasing[C]. Advanced Solid State Lasers, 2013: 47.

[19] Yamada M, Ono H, Ohta K, et al. 1.7 μm band optical fiber amplifier[C]. Optical Fiber Communication Conference, 2014: 1-3.

[20] Li Z, Alam S U, Daniel J M O, et al. 90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers[C]. European Conference on Optical Communication, 2014: 1-3.

[21] 中国科学院长春光机所长春新产业光电技术有限公司. 1064-1908 nm高功率光纤耦合激光系统[Z/OL]. [2016-03-15]. http://www.cnilaser.com/C-fiber_coupled_laser_1064-1908nm.htm.

[22] NKT Photonics. The power of light[Z/OL]. [2016-03-15]. http://www.nktphotonics.com/product/superk-compact-supercontinuum-lasers/.

[23] Tilma B W, Jiao Y, Kotani J, et al. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region[J]. IEEE Journal of Quantum Electronics, 2012, 48(2): 87-98.

[24] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 2004, 29(13): 1503-1505.

[25] Daniel J M, Simakov N, Tokurakawa M, et al. Ultra-short wavelength operation of a two-micron thulium fiber laser[C]. 2014 Conference on Lasers and Electro-Optics (CLEO), 2014: 1- 2.

[26] Daniel J M, Simakov N, Tokurakawa M, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 2015, 23(14): 18269-18276.

[27] Emami S D, Khodaei A, Gandan S, et al. Thulium-doped fiber laser utilizing a photonic crystal fiber-based optical low-pass filter with application in 1.7 μm and 1.8 μm band[J]. Optics Express, 2015, 23(15): 19681-19688.

[28] Yamada M, Senda K, Tanaka T, et al. Tm3+-Tb 3+-doped tunable fiber ring laser for 1700 nm wavelength region[J]. Electronics Letters, 2013, 49(20): 1287-1288.

[29] Firstov S V, Alyshev S V, Riumkin K E, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm[J]. Optics Letters, 2015, 40(18): 4360-4363.

[30] Dianov E M, Firstov S V, Alyshev S V, et al. A new bismuth-doped fiber laser, emitting in the range 1625-1775 nm[J]. Quantum Electronics, 2014, 44(6): 503-504.

[31] Alexander V V, Kevin K, Zhao X, et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1708 nm Raman fiber laser and contact cooling[J]. Lasers in Surgery & Medicine, 2011, 43(6): 470-480.

[32] Svane A S, Rottwitt K K. PM Raman fiber laser at 1679 nm[C]. Integrated Photonics Research, Silicon and Nanophotonics, 2012, JTu5A: JTu5A.28.

[33] Svane A S, Liu X, Rottwitt K. Highly stable PM Raman fiber laser at 1680 nm[C]. CLEO: Science and Innovations, 2013, CW1M: CW1M.6.

[34] Austin D, Weber S, Matia-Hernando P, et al. Generation and characterization of few-cycle phase-controlled 1.7 μm pulses[C]. High Intensity Lasers and High Field Phenomena, 2014, 201(11): 1077-1087.

[35] Ishida S, Kawagoe H, Aramaki M, et al. Ultrahigh resolution optical coherence tomography using high power fiber laser supercontinuum at 1.7 μm wavelength region[C]. SPIE, 2013, 8571: 85710B.

[36] Kawagoe H, Ishida S, Aramaki M, et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomedical Optics Express, 2014, 5(3): 932-943.

[37] Ishida S, Nishizawa N, Ohta T, et al. Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples[J]. Applied Physics Express, 2011, 4(5): 052501.

[38] Jung E J, Ju H L, Rho B S, et al. Spectrally sampled OCT imaging based on 1.7-μm continuous-wave supercontinuum source[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(3): 1200-1208.

[39] Li Z, Jung Y, Simakov N, et al. Extreme short wavelength operation (1.65-1.7 μm) of silica-based thulium-doped fiber amplifier[C]. Optical Fiber Communication Conference, 2015, Tu2C: Tu2C.1.

[40] Firstov S V, Alyshev S V, Riumkin K E, et al. Bismuth-doped fiber amplifier operating between 1600 and 1800 nm[J]. Quantum Electronics, 2015, 45(12): 1083-1085.

[41] 徐佳, 汪磊, 刘江, 等. 1653 nm窄线宽拉曼光纤放大器[J]. 中国激光, 2013, 40(6): 0602001.

    Xu Jia, Wang Lei, Liu Jiang, et al. Narrow line-width 1653 nm Raman fiber amplifiers[J]. Chinese J Lasers, 2013, 40(6): 0602001.

[42] Liu J, Shen D, Huang H, et al. High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings[J]. Optics Express, 2014, 22(6): 6605-6612.

[43] Xue G, Zhang B, Yin K, et al. All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm[C]. SPIE, 2015, 9255: 92550U.

[44] Quan Z, Gao C, Guo H, et al. 400 mW narrow-linewidth Tm-doped silica fiber laser output near 1750 nm with volume Bragg grating[J]. Scientific Reports, 2015, 5: 12034.

[45] Yao W, Chen B, Zhang J, et al. High-average-power operation of a pulsed Raman fiber amplifier at 1686 nm[J]. Optics Express, 2015, 23(9): 11007-11012.

[46] 张鹏, 王天枢, 李晓燕, 等. 基于ASE泵浦的1.7 μm波段的可调谐拉曼光纤激光器: 201510975935.6[P]. 2016-03-16.

[47] 张鹏, 王天枢, 张岩, 等. 光学层析成像用的1.7 μm波段增益谱和宽带光源实验研究[J]. 中国激光, 2016, 43(7): 0701006.

    Zhang Peng, Wang Tianshu, Zhang Yan, et al. Experimental research on broadband optical source and gain spectrum for optical coherence tomography at 1.7 μm region[J]. Chinese J Lasers, 2016, 43(7): 0701006.

[48] 张鹏, 韩科选, 王天枢, 等. 1.7 μm波段可调谐掺铥掺铽多波长光纤激光器: 201510975377.3[P]. 2016-03-16.

[49] Sharma U, Chang E W, Yun S H. Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth[J]. Optics Express, 2008, 16(24): 19712-19723.

[50] Piao Z, Ma T, Li J, et al. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm[J]. Applied Physics Letters, 2015, 107(8): 083701.

[51] Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy[C]. 19th Optoelectronics and Communications Conference (OECC) and the 39th Australian Conference on Optical Fibre Technology (ACOFT), Engineers Australia, 2014: 410-411.

[52] Wang S R, Wang H, Wang B J, et al. 1.78 μm strained InGaAs-InGaAsP-InP distributed feedback quantum well lasers[J]. Journal of Optoelectronics Laser, 2004, 15(8): 906-909.

[53] 于红艳, 赵玲娟, 王圩, 等. 一氧化氮气体探测用1.79-μm InGaAs/InGaAsP多量子阱分布反馈激光器的制备[C]. 全国化合物半导体材料、微波器件和光电器件学术会议, 2010.

    Yu Hongyan, Zhao Lingjuan, Wang Yu, et al. Preparation of 1.79 μm InGaAs/InGaAsP multi-quantum well distribution feedback laser for nitric oxide gas detection[C]. National Compound Semiconductor Materials, Microwave Devices and Optoelectronic Devices Conference, 2010.

[54] Pullen M G, Wolter B, Le A T, et al. Imaging an aligned polyatomic molecule with laser-induced electron diffraction[J]. Nature Communications, 2015, 6: 7262.

[55] Helena J, Doroshenko M E, ulc J, et al. Laser-diode pumped dysprosium-doped lead thiogallate laser output wavelength temporal evolution and tuning possibilities at 4.3-4.7 μm[C]. SPIE, 2016, 9726: 97261A.

张岩, 张鹏, 刘鹏, 韩科选, 都权力, 王天枢, 张立中, 佟首峰, 姜会林. 1.7 μm波段光纤光源研究进展及其应用[J]. 激光与光电子学进展, 2016, 53(9): 090002. Zhang Yan, Zhang Peng, Liu Peng, Han Kexuan, Du Quanli, Wang Tianshu, Zhang Lizhong, Tong Shoufeng, Jiang Huilin. Fiber Light Source at 1.7 μm Waveband and Its Applications[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!