激光与光电子学进展, 2016, 53 (9): 090002, 网络出版: 2016-09-14   

1.7 μm波段光纤光源研究进展及其应用 下载: 1267次

Fiber Light Source at 1.7 μm Waveband and Its Applications
作者单位
1 长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022
2 长春理工大学理学院, 吉林 长春 130022
3 长春理工大学光电工程学院, 吉林 长春 130022
4 长春理工大学材料科学与工程学院, 吉林 长春 130022
摘要
1.7 μm波段光纤光源在生物成像、激光医疗、特殊材料加工、有机物微量测量、中红外激光产生等领域有着巨大应用前景,已成为国内外的研究热点。总结了国内外1.7 μm光纤光源的研究进展,其研究内容主要包括:1.7 μm光纤光源技术的实现手段,国内外1.7 μm波段连续光纤激光器、脉冲激光器、宽带光源、放大器的研究情况及其相关应用。介绍了本课题组在1.7 μm波段光纤激光器及宽带光源的研究工作及取得的最新研究成果,展望了1.7 μm波段光纤光源的发展前景。
Abstract
1.7 μm waveband fiber light source has great application prospects in the fields of biological imaging, laser medical treatment, special materials processing, organic matter micro-measurement,mid-infrared laser generation and so on, and has become a hot area of research both at home and abroad. The research progress of 1.7 μm fiber light source at home and abroad is summarized. The research mainly includes the technical means to achieve 1.7 μm fiber light source, and research situation of continuous fiber lasers, pulsed lasers, broadband light sources,and fiber amplifiers of 1.7 μm waveband. Its related applications are summarized as well. The work and latest advances of our research group on 1.7 μm waveband fiber lasers and broadband light sources are introduced. Future development of 1.7 μm waveband fiber light source is prospected as well.
参考文献

[1] 李平雪, 杨春, 姚毅飞, 等. 980 nm光纤激光器的研究进展[J]. 激光与光电子学进展, 2013, 50(10): 100001.

    Li Pingxue, Yang Chun, Yao Yifei, et al. Research progress of 980 nm fiber laser[J]. Laser & Optoelectronics Progress, 2013, 50(10): 100001.

[2] Lin Z R, Liu C K, Keiser G. Tunable dual-wavelength erbium-doped fiber ring laser covering both C-band and L-band for high-speed communications[J]. Optik-International Journal for Light and Electron Optics, 2012, 123(1): 46-48.

[3] Royon R, Lhermite J, Sarger L, et al. High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm[J]. Optics Express, 2013, 21(11): 13818-13823.

[4] Guiraud G, Dubrasquet R, Boullet J, et al. Low noise high power continuous wave MOPA ytterbium doped fiber lasers at 1064 nm[C]. The European Conference on Lasers and Electro-Optics, 2015: CJ_11_1.

[5] 孙国勇, 杨敬, 瞿荣辉, 等. 多波长掺铒光纤激光器的研究进展[J]. 激光与光电子学进展, 2004, 41(9): 19-22.

    Sun Guoyong, Yang Jing, Qu Ronghui, et al. Research and progress of multiwavelength erbium-doped fiber laser[J]. Laser & Optoelectronics Progress, 2004, 41(9): 19-22.

[6] 韩凯, 马阎星, 王小林, 等. 高功率掺铥光纤激光的研究进展[J]. 激光与光电子学进展, 2010, 47(10): 101406.

    Han Kai, Ma Yanxing, Wang Xiaolin, et al. Progress of high power Tm-doped fiber laser[J]. Laser & Optoelectronics Progress, 2010, 47(10): 101406.

[7] Bashkatov A N, Genina E A, Kochubey V I, et al. Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm[J]. Optics and Spectroscopy, 2005, 99(5): 836-842.

[8] Ishida S, Nishizawa N.Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region[J]. Biomedical Optics Express, 2012, 3(2): 282-294.

[9] Tanaka M, Hirano M, Murashima K, et al. 1.7-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel[J]. Optics Express, 2015, 23(5): 6645-6655.

[10] Hasegawa T, Sogawa I. A near infrared angioscope visualizing lipid within arterial vessel wall based on multi-spectral image in 1.7 μm wavelength band[C]. SPIE, 2013, 8575: 857506.

[11] Tanaka M, Okuno T, Obi H, et al. Performance improvement by a broadband super-luminescent diode light source in 1.7-μm spectroscopic spectral-domain optical coherence tomography for lipid distribution imaging in a coronary artery[C]. SPIE, 2014, 8926: 89262T.

[12] Horton N G, Wang K, Kobat D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3): 205-209.

[13] Nguyen T N, Kieu K, Churin D, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm[J]. IEEE Photonics Technology Letters, 2013, 25(19): 1893-1896.

[14] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.

[15] Workman J, Jr, Weyer L. Practical guide and spectral atlas for interpretive near-infrared spectroscopy[M]. CRC Press, 2012.

[16] Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy[C]. 19th Optoelectronics and Communications Conference (OECC) and the 39th Australian Conference on Optical Fibre Technology(ACOFT), Engineers Australia, 2014: 410-411.

[17] Quimby R S, Shaw L B, Sanghera J S, et al. Modeling of cascade lasing in Dychalcogenide glass fiber laser with efficient output at 4.5 μm[J]. IEEE Photonics Technology Letters, 2008, 20(2): 123-125.

[18] Quimby R S, Saad M. Dyfluoroindate fiber laser at 4.5 μm with cascade lasing[C]. Advanced Solid State Lasers, 2013: 47.

[19] Yamada M, Ono H, Ohta K, et al. 1.7 μm band optical fiber amplifier[C]. Optical Fiber Communication Conference, 2014: 1-3.

[20] Li Z, Alam S U, Daniel J M O, et al. 90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers[C]. European Conference on Optical Communication, 2014: 1-3.

[21] 中国科学院长春光机所长春新产业光电技术有限公司. 1064-1908 nm高功率光纤耦合激光系统[Z/OL]. [2016-03-15]. http://www.cnilaser.com/C-fiber_coupled_laser_1064-1908nm.htm.

[22] NKT Photonics. The power of light[Z/OL]. [2016-03-15]. http://www.nktphotonics.com/product/superk-compact-supercontinuum-lasers/.

[23] Tilma B W, Jiao Y, Kotani J, et al. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region[J]. IEEE Journal of Quantum Electronics, 2012, 48(2): 87-98.

[24] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 2004, 29(13): 1503-1505.

[25] Daniel J M, Simakov N, Tokurakawa M, et al. Ultra-short wavelength operation of a two-micron thulium fiber laser[C]. 2014 Conference on Lasers and Electro-Optics (CLEO), 2014: 1- 2.

[26] Daniel J M, Simakov N, Tokurakawa M, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 2015, 23(14): 18269-18276.

[27] Emami S D, Khodaei A, Gandan S, et al. Thulium-doped fiber laser utilizing a photonic crystal fiber-based optical low-pass filter with application in 1.7 μm and 1.8 μm band[J]. Optics Express, 2015, 23(15): 19681-19688.

[28] Yamada M, Senda K, Tanaka T, et al. Tm3+-Tb 3+-doped tunable fiber ring laser for 1700 nm wavelength region[J]. Electronics Letters, 2013, 49(20): 1287-1288.

[29] Firstov S V, Alyshev S V, Riumkin K E, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm[J]. Optics Letters, 2015, 40(18): 4360-4363.

[30] Dianov E M, Firstov S V, Alyshev S V, et al. A new bismuth-doped fiber laser, emitting in the range 1625-1775 nm[J]. Quantum Electronics, 2014, 44(6): 503-504.

[31] Alexander V V, Kevin K, Zhao X, et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1708 nm Raman fiber laser and contact cooling[J]. Lasers in Surgery & Medicine, 2011, 43(6): 470-480.

[32] Svane A S, Rottwitt K K. PM Raman fiber laser at 1679 nm[C]. Integrated Photonics Research, Silicon and Nanophotonics, 2012, JTu5A: JTu5A.28.

[33] Svane A S, Liu X, Rottwitt K. Highly stable PM Raman fiber laser at 1680 nm[C]. CLEO: Science and Innovations, 2013, CW1M: CW1M.6.

[34] Austin D, Weber S, Matia-Hernando P, et al. Generation and characterization of few-cycle phase-controlled 1.7 μm pulses[C]. High Intensity Lasers and High Field Phenomena, 2014, 201(11): 1077-1087.

[35] Ishida S, Kawagoe H, Aramaki M, et al. Ultrahigh resolution optical coherence tomography using high power fiber laser supercontinuum at 1.7 μm wavelength region[C]. SPIE, 2013, 8571: 85710B.

[36] Kawagoe H, Ishida S, Aramaki M, et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomedical Optics Express, 2014, 5(3): 932-943.

[37] Ishida S, Nishizawa N, Ohta T, et al. Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples[J]. Applied Physics Express, 2011, 4(5): 052501.

[38] Jung E J, Ju H L, Rho B S, et al. Spectrally sampled OCT imaging based on 1.7-μm continuous-wave supercontinuum source[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(3): 1200-1208.

[39] Li Z, Jung Y, Simakov N, et al. Extreme short wavelength operation (1.65-1.7 μm) of silica-based thulium-doped fiber amplifier[C]. Optical Fiber Communication Conference, 2015, Tu2C: Tu2C.1.

[40] Firstov S V, Alyshev S V, Riumkin K E, et al. Bismuth-doped fiber amplifier operating between 1600 and 1800 nm[J]. Quantum Electronics, 2015, 45(12): 1083-1085.

[41] 徐佳, 汪磊, 刘江, 等. 1653 nm窄线宽拉曼光纤放大器[J]. 中国激光, 2013, 40(6): 0602001.

    Xu Jia, Wang Lei, Liu Jiang, et al. Narrow line-width 1653 nm Raman fiber amplifiers[J]. Chinese J Lasers, 2013, 40(6): 0602001.

[42] Liu J, Shen D, Huang H, et al. High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings[J]. Optics Express, 2014, 22(6): 6605-6612.

[43] Xue G, Zhang B, Yin K, et al. All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm[C]. SPIE, 2015, 9255: 92550U.

[44] Quan Z, Gao C, Guo H, et al. 400 mW narrow-linewidth Tm-doped silica fiber laser output near 1750 nm with volume Bragg grating[J]. Scientific Reports, 2015, 5: 12034.

[45] Yao W, Chen B, Zhang J, et al. High-average-power operation of a pulsed Raman fiber amplifier at 1686 nm[J]. Optics Express, 2015, 23(9): 11007-11012.

[46] 张鹏, 王天枢, 李晓燕, 等. 基于ASE泵浦的1.7 μm波段的可调谐拉曼光纤激光器: 201510975935.6[P]. 2016-03-16.

[47] 张鹏, 王天枢, 张岩, 等. 光学层析成像用的1.7 μm波段增益谱和宽带光源实验研究[J]. 中国激光, 2016, 43(7): 0701006.

    Zhang Peng, Wang Tianshu, Zhang Yan, et al. Experimental research on broadband optical source and gain spectrum for optical coherence tomography at 1.7 μm region[J]. Chinese J Lasers, 2016, 43(7): 0701006.

[48] 张鹏, 韩科选, 王天枢, 等. 1.7 μm波段可调谐掺铥掺铽多波长光纤激光器: 201510975377.3[P]. 2016-03-16.

[49] Sharma U, Chang E W, Yun S H. Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth[J]. Optics Express, 2008, 16(24): 19712-19723.

[50] Piao Z, Ma T, Li J, et al. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm[J]. Applied Physics Letters, 2015, 107(8): 083701.

[51] Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy[C]. 19th Optoelectronics and Communications Conference (OECC) and the 39th Australian Conference on Optical Fibre Technology (ACOFT), Engineers Australia, 2014: 410-411.

[52] Wang S R, Wang H, Wang B J, et al. 1.78 μm strained InGaAs-InGaAsP-InP distributed feedback quantum well lasers[J]. Journal of Optoelectronics Laser, 2004, 15(8): 906-909.

[53] 于红艳, 赵玲娟, 王圩, 等. 一氧化氮气体探测用1.79-μm InGaAs/InGaAsP多量子阱分布反馈激光器的制备[C]. 全国化合物半导体材料、微波器件和光电器件学术会议, 2010.

    Yu Hongyan, Zhao Lingjuan, Wang Yu, et al. Preparation of 1.79 μm InGaAs/InGaAsP multi-quantum well distribution feedback laser for nitric oxide gas detection[C]. National Compound Semiconductor Materials, Microwave Devices and Optoelectronic Devices Conference, 2010.

[54] Pullen M G, Wolter B, Le A T, et al. Imaging an aligned polyatomic molecule with laser-induced electron diffraction[J]. Nature Communications, 2015, 6: 7262.

[55] Helena J, Doroshenko M E, ulc J, et al. Laser-diode pumped dysprosium-doped lead thiogallate laser output wavelength temporal evolution and tuning possibilities at 4.3-4.7 μm[C]. SPIE, 2016, 9726: 97261A.

张岩, 张鹏, 刘鹏, 韩科选, 都权力, 王天枢, 张立中, 佟首峰, 姜会林. 1.7 μm波段光纤光源研究进展及其应用[J]. 激光与光电子学进展, 2016, 53(9): 090002. Zhang Yan, Zhang Peng, Liu Peng, Han Kexuan, Du Quanli, Wang Tianshu, Zhang Lizhong, Tong Shoufeng, Jiang Huilin. Fiber Light Source at 1.7 μm Waveband and Its Applications[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!