光学学报, 2016, 36 (10): 1026007, 网络出版: 2016-10-12   

激光脉冲整形在微纳光学系统中的应用研究进展 下载: 885次

Development of Ultrashort Laser Pulse Shaping Technique and Its Applications in Micro- and Nano-Optical Systems
作者单位
北京大学物理学院人工微结构与介观物理国家重点实验室, 北京 100871
引用该论文

褚赛赛, 李洪云, 王树峰, 杨宏, 龚旗煌. 激光脉冲整形在微纳光学系统中的应用研究进展[J]. 光学学报, 2016, 36(10): 1026007.

Chu Saisai, Li Hongyun, Wang Shufeng, Yang Hong, Gong Qihuang. Development of Ultrashort Laser Pulse Shaping Technique and Its Applications in Micro- and Nano-Optical Systems[J]. Acta Optica Sinica, 2016, 36(10): 1026007.

参考文献

[1] Nuernberger P, Vogt G, Brixner T, et al. Femtosecond quantum control of molecular dynamics in the condensed phase[J]. Physical Chemistry Chemical Physics, 2007, 9: 2470-2497.

[2] Cundiff S T, Weiner A M. Optical arbitrary waveform generation[J]. Nature Photonics, 2010, 4: 760-766.

[3] Froehly C, Colombeau B, Vampouille M. II shaping and analysis of picosecond light pulses[J]. Progress in Optics, 1983, 20: 65-153.

[4] Yelin D, Meshulach D, Silberberg Y. Adaptive femtosecond pulse compression[J]. Optics Letters, 1997, 22(23): 1793-1795.

[5] Zeek E, Maginnis K, Backus S, et al. Pulse compression by use of deformable mirrors[J]. Optics Letters, 1999, 24(7): 493-495.

[6] Zhang S, Zhang H, Lu C, et al. Mechanism of polarization-induced single-photon fluorescence enhancement[J]. The Journal of Chemical Physics, 2010, 133(21): 214504.

[7] Zhang S, Lu C, Jia T, et al. Controlling field-free molecular orientation with combined single- and dual-color laser pulses[J]. Physical Review A, 2011, 83(4): 043410.

[8] Zhang S, Zhang H, Jia T, et al. Coherent control of two-photon transitions in a two-level system with broadband absorption[J]. Physical Review A, 2009, 80(4): 043402.

[9] Singha S, Hu Z, Gordon R J. Closed loop coherent control of electronic transitions in gallium arsenide[J]. The Journal of Physical Chemistry A, 2011, 115(23): 6093-6101.

[10] Chu S S, Wang S F, Deng Y K, et al. Optimizing two-photon fluorescence of coumarin dye by combined temporal-spatial pulse shaping[J]. Optics Communications, 2011, 284(16): 4070-4072.

[11] Hildner R, Brinks D, Nieder J B, et al. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes[J]. Science, 2013, 340(6139): 1448-1451.

[12] Frei F, Bloch R, Feurer T. Influence of finite spatial resolution on single- and double-pass femtosecond pulse shapers[J]. Optics Letters, 2010, 35(23): 4072-4074.

[13] Brinks D, Hildner R, Stefani F D, et al. Beating spatio-temporal coupling: Implications for pulse shaping and coherent control experiments[J]. Optics Express, 2011, 19(27): 26486-26499.

[14] Sukharev M, Seideman T. Coherent control approaches to light guidance in the nanoscale[J]. The Journal of Chemical Physics, 2006, 124(14): 144707.

[15] Li X, Stockman M I. Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal[J]. Physical Review B, 2008, 77(19): 195109.

[16] Dantus M, Lozovoy V V, Pastirk I. MIIPS characterizes and corrects femtosecond pulses[J]. Laser Focus World, 2007, 43(5): 101-104.

[17] Dela Cruz J M, Pastirk I, Lozovoy V V, et al. Multiphoton intrapulse interference 3: Probing microscopic chemical environments[J]. Journal of Physical Chemistry A, 2004, 108(1): 53-58.

[18] Silberberg Y. Quantum coherent control for nonlinear spectroscopy and microscopy[J]. Annual Review of Physical Chemistry, 2009, 60: 277-292.

[19] Bingwei X, Gunn J M, Cruz J M D, et al. Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses[J]. Journal of the Optical Society of America B, 2006, 23(4): 750-759.

[20] Brown D P, Walker M A, Urbas A M, et al. Direct measurement of group delay dispersion in metamagnetics for ultrafast pulse shaping[J]. Optics Express, 2012, 20(21): 23082-23087.

[21] Comin A, Ciesielski R, Coca-López N, et al. Phase retrieval of ultrashort laser pulses using a MIIPS algorithm[J]. Optics Express, 2016, 24(3): 2505-2512.

[22] Bonacina L, Mugnier Y, Courvoisier F, et al. Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy[J]. Applied Physics B, 2007, 87(3): 399-403.

[23] Chu S S, Wang S F, Gong Q H. Ultrafast third-order nonlinear optical properties of graphene in aqueous solution and polyvinyl alcohol film[J]. Chemical Physics Letters, 2012, 523: 104-106.

[24] Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803-810.

[25] Mikhailov S A. Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems[J]. Physical Review B, 2011, 84(4): 045432.

[26] Ciesielski R, Comin A, Handloser M, et al. Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy[J]. Nano Letters, 2015, 15(8): 4968-4972.

[27] Berweger S, Atkin J M, Xu X G, et al. Femtosecond nanofocusing with full optical waveform control[J]. Nano Letters, 2011, 11(10): 4309-4313.

[28] Wu H J, Nishiyama Y, Narushima T, et al. Sub-20-fs time-resolved measurements in an apertured near-field optical microscope combined with a pulse-shaping technique[J]. Applied Physics Express, 2012, 5(6): 062002.

[29] Nishiyama Y, Imura K, Okamoto H. Observation of plasmon wave packet motions via femtosecond time-resolved near-field imaging techniques[J]. Nano Letters, 2015, 15(11): 7657-7665.

[30] Aeschlimann M, Brixner T, Cunovic S, et al. Nano-optical control of hot-spot field superenhancement on a corrugated silver surface[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 275-282.

[31] Aeschlimann M, Bauer M, Bayer D, et al. Adaptive subwavelength control of nano-optical fields[J]. Nature, 2007, 446(7133): 301-304.

[32] Hanke T, Krauss G, Trutlein D, et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses[J]. Physical Review Letters, 2009, 103(25): 257404.

[33] Schmidt S, Piglosiewicz B, Sadiq D, et al. Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution[J]. ACS Nano, 2012, 6(7): 6040-6048.

[34] Imaeda K, Imura K. Optical control of plasmonic fields by phase-modulated pulse excitations[J]. Optics Express, 2013, 21(22): 27481-27489.

[35] Mrsell E, Losquin A, Svrd R, et al. Nanoscale imaging of local few-femtosecond near-field dynamics within a single plasmonic nanoantenna[J]. Nano Letters, 2015, 15(10): 6601-6608.

[36] Lemke C, Leiner T, Evlyukhin A, et al. The interplay between localized and propagating plasmonic excitations tracked in space and time[J]. Nano Letters, 2014, 14(5): 2431-2435.

[37] Sun Q, Yu H, Ueno K, et al. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy[J]. ACS Nano, 2016, 10(3): 3835-3842.

[38] Sun Q, Ueno K, Yu H, et al. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy[J]. Light: Science & Applications, 2013, 2(12): e118.

[39] Barwick B, Flannigan D J, Zewail A H. Photon-induced near-field electron microscopy[J]. Nature, 2009, 462(7275): 902-906.

[40] Hanke T, Cesar J, Knittel V, et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas[J]. Nano Letters, 2012, 12(2): 992-996.

[41] Cao L, Nome R A, Montgomery J M, et al. Controlling plasmonic wave packets in silver nanowires[J]. Nano Letters, 2010, 10(9): 3389-3394.

[42] Piglosiewicz B, Sadiq D, Mascheck M, et al. Ultrasmall bullets of light—focusing few-cycle light pulses to the diffraction limit[J]. Optics Express, 2011, 19(15): 14451-14463.

[43] Dombi P, Irvine S E, Rácz P, et al. Observation of few-cycle, strong-field phenomena in surface plasmon fields[J]. Optics Express, 2010, 18(23): 24206-24212.

[44] Dombi P, Rácz P. Ultrafast monoenergetic electron source by optical waveform control of surface plasmons[J]. Optics Express, 2008, 16(5): 2887-2893.

[45] Piglosiewicz B, Schmidt S. Park D J, et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures[J]. Nature Photonics, 2014, 8(1): 37-42.

[46] Apolonski A, Dombi P, Paulus G G, et al. Observation of light-phase-sensitive photoemission from a metal[J]. Physical Review Letters, 2004, 92(7): 073902.

[47] Krüger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip[J]. Nature, 2011, 475(7354): 78-81.

[48] Park D J, Piglosiewicz B, Schmidt S, et al. Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip[J]. Physical Review Letters, 2012, 109(24): 244803.

[49] Goulielmakis E, Loh Z H, Wirth A, et al. Real-time observation of valence electron motion[J]. Nature, 2010, 466(7307): 739-743.

[50] Bormann R, Gulde M, Weismann A, et al. Tip-enhanced strong-field photoemission[J]. Physical Review Letters, 2010, 105(14): 147601.

[51] Schenk M, Krüger M, Hommelhoff P. Strong-field above-threshold photoemission from sharp metal tips[J]. Physical Review Letters, 2010, 105(25): 257601.

[52] Zherebtsov S, Fennel T, Plenge J, et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields[J]. Nature Physics, 2011, 7(8): 656-662.

[53] Vogelsang J, Robin J, Nagy B J, et al. Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons[J]. Nano Letters, 2015, 15(7): 4685-4691.

[54] Krueger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip[J]. Nature, 2011, 475(7354): 78-81.

[55] Aeschlimann M, Bauer M, Bayer D, et al. Optimal open-loop near-field control of plasmonic nanostructures[J]. New Journal of Physics, 2012, 14(3): 033030.

[56] Tuchscherer P, Rewitz C, Voronine D V, et al. Analytic coherent control of plasmon propagation in nanostructures[J]. Optics Express, 2009, 17(16): 14235-14259.

[57] Biagioni P, Huang J S, Hecht B. Nanoantennas for visible and infrared radiation[J]. Reports on Progress in Physics, 2012, 75(2): 024402.

[58] Schnell M, Garcia-Etxarri A, Huber A, et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas[J]. Nature Photonics, 2009, 3(5): 287-291.

[59] Vellekoop I, Mosk A. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 2008, 281(11): 3071-3080.

[60] Schnell M, Garcia-Etxarri A, Alkorta J, et al. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps[J]. Nano Letters, 2010, 10(9): 3524-3528.

[61] Stockman M I. Ultrafast nanoplasmonics under coherent control[J]. New Journal of Physics, 2008, 10(2): 025031.

[62] Stockman M I, Faleev S V, Bergman D J. Coherent control of femtosecond energy localization in nanosystems[J]. Physical Review Letters, 2002, 88(6): 067402.

[63] Kao T S, Jenkins S, Ruostekoski J, et al. Coherent control of nanoscale light localization in metamaterial: Creating and positioning isolated subwavelength energy hot spots[J]. Physical Review Letters, 2011, 106(8): 085501.

[64] Rewitz C, Keitzl T, Tuchscherer P, et al. Spectral-interference microscopy for characterization of functional plasmonic elements[J]. Optics Express, 2012, 20(13): 14632-14647.

[65] Rewitz C, Keitzl T, Tuchscherer P, et al. Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry[J]. Nano Letters, 2012, 12(1): 45-49.

[66] Sukharev M, Seideman T. Phase and polarization control as a route to plasmonic nanodevices[J]. Nano Letters, 2006, 6(4): 715-719.

[67] Volpe G, Cherukulappurath S, Parramon R J, et al. Controlling the optical near field of nanoantennas with spatial phase-shaped beams[J]. Nano Letters, 2009, 9(10): 3608-3611.

[68] Lee T W, Gray S K. Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses[J]. Physical Review B, 2005, 71(3): 035423.

[69] Rewitz C, Keitzl T, Tuchscherer P, et al. Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry[J]. Nano Letters, 2011, 12(1): 45-49.

[70] Jarrett J W, Zhao T, Johnson J S, et al. Plasmon-mediated two-photon photoluminescence-detected circular dichroism in gold nanosphere assemblies[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 765-770.

[71] Lee H, Cheng Y C, Fleming G R. Coherence dynamics in photosynthesis: Protein protection of excitonic coherence[J]. Science, 2007, 316(5830): 1462-1465.

[72] Abramavicius D, Mukamel S. Quantum oscillatory exciton migration in photosynthetic reaction centers[J]. The Journal of Chemical Physics, 2010, 133(6): 064510.

[73] Gerhardt I, Wrigge G, Zumofen G, et al. Coherent state preparation and observation of Rabi oscillations in a single molecule[J]. Physical Review A, 2009, 79(1): 011402.

[74] Chong S, Min W, Xie X S. Ground-state depletion microscopy: Detection sensitivity of single-molecule optical absorption at room temperature[J]. The Journal of Physical Chemistry Letters, 2010, 1(23): 3316-3322.

[75] Celebrano M, Kukura P, Renn A, et al. Single-molecule imaging by optical absorption[J]. Nature Photonics, 2011, 5(2): 95-98.

[76] Kukura P, Celebrano M, Renn A, et al. Single-molecule sensitivity in optical absorption at room temperature[J]. The Journal of Physical Chemistry Letters, 2010, 1(23): 3323-3327.

[77] Schlau-Cohen G S, Wang Q, Southall J, et al. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states[J]. Proceedings of the National Academy of Sciences, 2013, 110(27): 10899-10903.

[78] Brinks D, Hildner R, van Dijk E M H P, et al. Ultrafast dynamics of single molecules[J]. Chemical Society Reviews, 2014, 43(8): 2476-2491.

[79] Gaiduk A, Yorulmaz M, Ruijgrok P, et al. Room-temperature detection of a single molecule’s absorption by photothermal contrast[J]. Science, 2010, 330(6002): 353-356.

[80] Kuroda D G, Singh C, Peng Z, et al. Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency[J]. Science, 2009, 326(5950): 263-267.

[81] Harel E, Engel G S. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2)[J]. Proceedings of the National Academy of Sciences, 2012, 109(3): 706-711.

[82] Engel G S, Calhoun T R, Read E L, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems[J]. Nature, 2007, 446(7137): 782-786.

[83] Collini E, Wong C Y, Wilk K E, et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature[J]. Nature, 2010, 463(7281): 644-647.

[84] Panitchayangkoon G, Hayes D, Fransted K A, et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature[J]. Proceedings of the National Academy of Sciences, 2010, 107(29): 12766-12770.

[85] Scholes G D. Quantum-coherent electronic energy transfer: Did nature think of it first [J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 2-8.

[86] Sarovar M, Ishizaki A, Fleming G R, et al. Quantum entanglement in photosynthetic light-harvesting complexes[J]. Nature Physics, 2010, 6(6): 462-467.

[87] Hildner R, Brinks D, van Hulst N F. Femtosecond coherence and quantum control of single molecules at room temperature[J]. Nature Physics, 2011, 7(2): 172-177.

[88] Brinks D, Stefani F D, Kulzer F, et al. Visualizing and controlling vibrational wave packets of single molecules[J]. Nature, 2010, 465(7300): 905-908.

[89] Brinks D, Hildner R, Stefani F D, et al. Coherent control of single molecules at room temperature[J]. Faraday Discussions, 2011, 153: 51-60.

[90] Hildner R, Brinks D, Stefani F D, et al. Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy[J]. Physical Chemistry Chemical Physics, 2011, 13(5): 1888-1894.

[91] Herek J L, Wohlleben W, Cogdell R J, et al. Quantum control of energy flow in light harvesting[J]. Nature, 2002, 417(6888): 533-535.

[92] Prokhorenko V I, Nagy A M, Waschuk S A, et al. Coherent control of retinal isomerization in bacteriorhodopsin[J]. Science, 2006, 313(5791): 1257-1261.

褚赛赛, 李洪云, 王树峰, 杨宏, 龚旗煌. 激光脉冲整形在微纳光学系统中的应用研究进展[J]. 光学学报, 2016, 36(10): 1026007. Chu Saisai, Li Hongyun, Wang Shufeng, Yang Hong, Gong Qihuang. Development of Ultrashort Laser Pulse Shaping Technique and Its Applications in Micro- and Nano-Optical Systems[J]. Acta Optica Sinica, 2016, 36(10): 1026007.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!