光学学报, 2016, 36 (10): 1026007, 网络出版: 2016-10-12   

激光脉冲整形在微纳光学系统中的应用研究进展 下载: 885次

Development of Ultrashort Laser Pulse Shaping Technique and Its Applications in Micro- and Nano-Optical Systems
作者单位
北京大学物理学院人工微结构与介观物理国家重点实验室, 北京 100871
摘要
通过对激光脉冲频谱的相位、振幅或偏振进行调制,可以获得不同时域分布的激光脉冲。这些特性不同的激光脉冲在物理过程和光学器件研究中具有重要的应用。随着光发射电子显微镜、超灵敏探测光谱仪、扫描近场显微等技术的发展,激光脉冲整形技术在微纳米光学中的应用日益深入。总结了近年来激光脉冲整形与测量技术的发展,综述了激光脉冲整形在近场光学、光发射电子显微镜、单分子光谱中的应用研究进展。
Abstract
An ultrashort laser pulse will own different characteristic time distribution when its phase, amplitude or polarization is modulated in the frequency domain. These characterized ultrashort laser pulses are applied in the research of basic physical processes and optical devices. Benefiting from the development of photoemission microscopy, ultrasensitive spectroscopy and scanning near-field optical microscopy, the ultrashort laser pulse shaping technique has been more and more applied in micro- and nano-optics. This review summarizes the development of ultrashort laser pulse shaping and characterizing techniques and the usage of the ultrashort laser pulse shaping technique in scanning near-field optical microscopy, photoemission electron microscope and single molecule spectroscopy.
参考文献

[1] Nuernberger P, Vogt G, Brixner T, et al. Femtosecond quantum control of molecular dynamics in the condensed phase[J]. Physical Chemistry Chemical Physics, 2007, 9: 2470-2497.

[2] Cundiff S T, Weiner A M. Optical arbitrary waveform generation[J]. Nature Photonics, 2010, 4: 760-766.

[3] Froehly C, Colombeau B, Vampouille M. II shaping and analysis of picosecond light pulses[J]. Progress in Optics, 1983, 20: 65-153.

[4] Yelin D, Meshulach D, Silberberg Y. Adaptive femtosecond pulse compression[J]. Optics Letters, 1997, 22(23): 1793-1795.

[5] Zeek E, Maginnis K, Backus S, et al. Pulse compression by use of deformable mirrors[J]. Optics Letters, 1999, 24(7): 493-495.

[6] Zhang S, Zhang H, Lu C, et al. Mechanism of polarization-induced single-photon fluorescence enhancement[J]. The Journal of Chemical Physics, 2010, 133(21): 214504.

[7] Zhang S, Lu C, Jia T, et al. Controlling field-free molecular orientation with combined single- and dual-color laser pulses[J]. Physical Review A, 2011, 83(4): 043410.

[8] Zhang S, Zhang H, Jia T, et al. Coherent control of two-photon transitions in a two-level system with broadband absorption[J]. Physical Review A, 2009, 80(4): 043402.

[9] Singha S, Hu Z, Gordon R J. Closed loop coherent control of electronic transitions in gallium arsenide[J]. The Journal of Physical Chemistry A, 2011, 115(23): 6093-6101.

[10] Chu S S, Wang S F, Deng Y K, et al. Optimizing two-photon fluorescence of coumarin dye by combined temporal-spatial pulse shaping[J]. Optics Communications, 2011, 284(16): 4070-4072.

[11] Hildner R, Brinks D, Nieder J B, et al. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes[J]. Science, 2013, 340(6139): 1448-1451.

[12] Frei F, Bloch R, Feurer T. Influence of finite spatial resolution on single- and double-pass femtosecond pulse shapers[J]. Optics Letters, 2010, 35(23): 4072-4074.

[13] Brinks D, Hildner R, Stefani F D, et al. Beating spatio-temporal coupling: Implications for pulse shaping and coherent control experiments[J]. Optics Express, 2011, 19(27): 26486-26499.

[14] Sukharev M, Seideman T. Coherent control approaches to light guidance in the nanoscale[J]. The Journal of Chemical Physics, 2006, 124(14): 144707.

[15] Li X, Stockman M I. Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal[J]. Physical Review B, 2008, 77(19): 195109.

[16] Dantus M, Lozovoy V V, Pastirk I. MIIPS characterizes and corrects femtosecond pulses[J]. Laser Focus World, 2007, 43(5): 101-104.

[17] Dela Cruz J M, Pastirk I, Lozovoy V V, et al. Multiphoton intrapulse interference 3: Probing microscopic chemical environments[J]. Journal of Physical Chemistry A, 2004, 108(1): 53-58.

[18] Silberberg Y. Quantum coherent control for nonlinear spectroscopy and microscopy[J]. Annual Review of Physical Chemistry, 2009, 60: 277-292.

[19] Bingwei X, Gunn J M, Cruz J M D, et al. Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses[J]. Journal of the Optical Society of America B, 2006, 23(4): 750-759.

[20] Brown D P, Walker M A, Urbas A M, et al. Direct measurement of group delay dispersion in metamagnetics for ultrafast pulse shaping[J]. Optics Express, 2012, 20(21): 23082-23087.

[21] Comin A, Ciesielski R, Coca-López N, et al. Phase retrieval of ultrashort laser pulses using a MIIPS algorithm[J]. Optics Express, 2016, 24(3): 2505-2512.

[22] Bonacina L, Mugnier Y, Courvoisier F, et al. Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy[J]. Applied Physics B, 2007, 87(3): 399-403.

[23] Chu S S, Wang S F, Gong Q H. Ultrafast third-order nonlinear optical properties of graphene in aqueous solution and polyvinyl alcohol film[J]. Chemical Physics Letters, 2012, 523: 104-106.

[24] Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803-810.

[25] Mikhailov S A. Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems[J]. Physical Review B, 2011, 84(4): 045432.

[26] Ciesielski R, Comin A, Handloser M, et al. Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy[J]. Nano Letters, 2015, 15(8): 4968-4972.

[27] Berweger S, Atkin J M, Xu X G, et al. Femtosecond nanofocusing with full optical waveform control[J]. Nano Letters, 2011, 11(10): 4309-4313.

[28] Wu H J, Nishiyama Y, Narushima T, et al. Sub-20-fs time-resolved measurements in an apertured near-field optical microscope combined with a pulse-shaping technique[J]. Applied Physics Express, 2012, 5(6): 062002.

[29] Nishiyama Y, Imura K, Okamoto H. Observation of plasmon wave packet motions via femtosecond time-resolved near-field imaging techniques[J]. Nano Letters, 2015, 15(11): 7657-7665.

[30] Aeschlimann M, Brixner T, Cunovic S, et al. Nano-optical control of hot-spot field superenhancement on a corrugated silver surface[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 275-282.

[31] Aeschlimann M, Bauer M, Bayer D, et al. Adaptive subwavelength control of nano-optical fields[J]. Nature, 2007, 446(7133): 301-304.

[32] Hanke T, Krauss G, Trutlein D, et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses[J]. Physical Review Letters, 2009, 103(25): 257404.

[33] Schmidt S, Piglosiewicz B, Sadiq D, et al. Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution[J]. ACS Nano, 2012, 6(7): 6040-6048.

[34] Imaeda K, Imura K. Optical control of plasmonic fields by phase-modulated pulse excitations[J]. Optics Express, 2013, 21(22): 27481-27489.

[35] Mrsell E, Losquin A, Svrd R, et al. Nanoscale imaging of local few-femtosecond near-field dynamics within a single plasmonic nanoantenna[J]. Nano Letters, 2015, 15(10): 6601-6608.

[36] Lemke C, Leiner T, Evlyukhin A, et al. The interplay between localized and propagating plasmonic excitations tracked in space and time[J]. Nano Letters, 2014, 14(5): 2431-2435.

[37] Sun Q, Yu H, Ueno K, et al. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy[J]. ACS Nano, 2016, 10(3): 3835-3842.

[38] Sun Q, Ueno K, Yu H, et al. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy[J]. Light: Science & Applications, 2013, 2(12): e118.

[39] Barwick B, Flannigan D J, Zewail A H. Photon-induced near-field electron microscopy[J]. Nature, 2009, 462(7275): 902-906.

[40] Hanke T, Cesar J, Knittel V, et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas[J]. Nano Letters, 2012, 12(2): 992-996.

[41] Cao L, Nome R A, Montgomery J M, et al. Controlling plasmonic wave packets in silver nanowires[J]. Nano Letters, 2010, 10(9): 3389-3394.

[42] Piglosiewicz B, Sadiq D, Mascheck M, et al. Ultrasmall bullets of light—focusing few-cycle light pulses to the diffraction limit[J]. Optics Express, 2011, 19(15): 14451-14463.

[43] Dombi P, Irvine S E, Rácz P, et al. Observation of few-cycle, strong-field phenomena in surface plasmon fields[J]. Optics Express, 2010, 18(23): 24206-24212.

[44] Dombi P, Rácz P. Ultrafast monoenergetic electron source by optical waveform control of surface plasmons[J]. Optics Express, 2008, 16(5): 2887-2893.

[45] Piglosiewicz B, Schmidt S. Park D J, et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures[J]. Nature Photonics, 2014, 8(1): 37-42.

[46] Apolonski A, Dombi P, Paulus G G, et al. Observation of light-phase-sensitive photoemission from a metal[J]. Physical Review Letters, 2004, 92(7): 073902.

[47] Krüger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip[J]. Nature, 2011, 475(7354): 78-81.

[48] Park D J, Piglosiewicz B, Schmidt S, et al. Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip[J]. Physical Review Letters, 2012, 109(24): 244803.

[49] Goulielmakis E, Loh Z H, Wirth A, et al. Real-time observation of valence electron motion[J]. Nature, 2010, 466(7307): 739-743.

[50] Bormann R, Gulde M, Weismann A, et al. Tip-enhanced strong-field photoemission[J]. Physical Review Letters, 2010, 105(14): 147601.

[51] Schenk M, Krüger M, Hommelhoff P. Strong-field above-threshold photoemission from sharp metal tips[J]. Physical Review Letters, 2010, 105(25): 257601.

[52] Zherebtsov S, Fennel T, Plenge J, et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields[J]. Nature Physics, 2011, 7(8): 656-662.

[53] Vogelsang J, Robin J, Nagy B J, et al. Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons[J]. Nano Letters, 2015, 15(7): 4685-4691.

[54] Krueger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip[J]. Nature, 2011, 475(7354): 78-81.

[55] Aeschlimann M, Bauer M, Bayer D, et al. Optimal open-loop near-field control of plasmonic nanostructures[J]. New Journal of Physics, 2012, 14(3): 033030.

[56] Tuchscherer P, Rewitz C, Voronine D V, et al. Analytic coherent control of plasmon propagation in nanostructures[J]. Optics Express, 2009, 17(16): 14235-14259.

[57] Biagioni P, Huang J S, Hecht B. Nanoantennas for visible and infrared radiation[J]. Reports on Progress in Physics, 2012, 75(2): 024402.

[58] Schnell M, Garcia-Etxarri A, Huber A, et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas[J]. Nature Photonics, 2009, 3(5): 287-291.

[59] Vellekoop I, Mosk A. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 2008, 281(11): 3071-3080.

[60] Schnell M, Garcia-Etxarri A, Alkorta J, et al. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps[J]. Nano Letters, 2010, 10(9): 3524-3528.

[61] Stockman M I. Ultrafast nanoplasmonics under coherent control[J]. New Journal of Physics, 2008, 10(2): 025031.

[62] Stockman M I, Faleev S V, Bergman D J. Coherent control of femtosecond energy localization in nanosystems[J]. Physical Review Letters, 2002, 88(6): 067402.

[63] Kao T S, Jenkins S, Ruostekoski J, et al. Coherent control of nanoscale light localization in metamaterial: Creating and positioning isolated subwavelength energy hot spots[J]. Physical Review Letters, 2011, 106(8): 085501.

[64] Rewitz C, Keitzl T, Tuchscherer P, et al. Spectral-interference microscopy for characterization of functional plasmonic elements[J]. Optics Express, 2012, 20(13): 14632-14647.

[65] Rewitz C, Keitzl T, Tuchscherer P, et al. Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry[J]. Nano Letters, 2012, 12(1): 45-49.

[66] Sukharev M, Seideman T. Phase and polarization control as a route to plasmonic nanodevices[J]. Nano Letters, 2006, 6(4): 715-719.

[67] Volpe G, Cherukulappurath S, Parramon R J, et al. Controlling the optical near field of nanoantennas with spatial phase-shaped beams[J]. Nano Letters, 2009, 9(10): 3608-3611.

[68] Lee T W, Gray S K. Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses[J]. Physical Review B, 2005, 71(3): 035423.

[69] Rewitz C, Keitzl T, Tuchscherer P, et al. Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry[J]. Nano Letters, 2011, 12(1): 45-49.

[70] Jarrett J W, Zhao T, Johnson J S, et al. Plasmon-mediated two-photon photoluminescence-detected circular dichroism in gold nanosphere assemblies[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 765-770.

[71] Lee H, Cheng Y C, Fleming G R. Coherence dynamics in photosynthesis: Protein protection of excitonic coherence[J]. Science, 2007, 316(5830): 1462-1465.

[72] Abramavicius D, Mukamel S. Quantum oscillatory exciton migration in photosynthetic reaction centers[J]. The Journal of Chemical Physics, 2010, 133(6): 064510.

[73] Gerhardt I, Wrigge G, Zumofen G, et al. Coherent state preparation and observation of Rabi oscillations in a single molecule[J]. Physical Review A, 2009, 79(1): 011402.

[74] Chong S, Min W, Xie X S. Ground-state depletion microscopy: Detection sensitivity of single-molecule optical absorption at room temperature[J]. The Journal of Physical Chemistry Letters, 2010, 1(23): 3316-3322.

[75] Celebrano M, Kukura P, Renn A, et al. Single-molecule imaging by optical absorption[J]. Nature Photonics, 2011, 5(2): 95-98.

[76] Kukura P, Celebrano M, Renn A, et al. Single-molecule sensitivity in optical absorption at room temperature[J]. The Journal of Physical Chemistry Letters, 2010, 1(23): 3323-3327.

[77] Schlau-Cohen G S, Wang Q, Southall J, et al. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states[J]. Proceedings of the National Academy of Sciences, 2013, 110(27): 10899-10903.

[78] Brinks D, Hildner R, van Dijk E M H P, et al. Ultrafast dynamics of single molecules[J]. Chemical Society Reviews, 2014, 43(8): 2476-2491.

[79] Gaiduk A, Yorulmaz M, Ruijgrok P, et al. Room-temperature detection of a single molecule’s absorption by photothermal contrast[J]. Science, 2010, 330(6002): 353-356.

[80] Kuroda D G, Singh C, Peng Z, et al. Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency[J]. Science, 2009, 326(5950): 263-267.

[81] Harel E, Engel G S. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2)[J]. Proceedings of the National Academy of Sciences, 2012, 109(3): 706-711.

[82] Engel G S, Calhoun T R, Read E L, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems[J]. Nature, 2007, 446(7137): 782-786.

[83] Collini E, Wong C Y, Wilk K E, et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature[J]. Nature, 2010, 463(7281): 644-647.

[84] Panitchayangkoon G, Hayes D, Fransted K A, et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature[J]. Proceedings of the National Academy of Sciences, 2010, 107(29): 12766-12770.

[85] Scholes G D. Quantum-coherent electronic energy transfer: Did nature think of it first [J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 2-8.

[86] Sarovar M, Ishizaki A, Fleming G R, et al. Quantum entanglement in photosynthetic light-harvesting complexes[J]. Nature Physics, 2010, 6(6): 462-467.

[87] Hildner R, Brinks D, van Hulst N F. Femtosecond coherence and quantum control of single molecules at room temperature[J]. Nature Physics, 2011, 7(2): 172-177.

[88] Brinks D, Stefani F D, Kulzer F, et al. Visualizing and controlling vibrational wave packets of single molecules[J]. Nature, 2010, 465(7300): 905-908.

[89] Brinks D, Hildner R, Stefani F D, et al. Coherent control of single molecules at room temperature[J]. Faraday Discussions, 2011, 153: 51-60.

[90] Hildner R, Brinks D, Stefani F D, et al. Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy[J]. Physical Chemistry Chemical Physics, 2011, 13(5): 1888-1894.

[91] Herek J L, Wohlleben W, Cogdell R J, et al. Quantum control of energy flow in light harvesting[J]. Nature, 2002, 417(6888): 533-535.

[92] Prokhorenko V I, Nagy A M, Waschuk S A, et al. Coherent control of retinal isomerization in bacteriorhodopsin[J]. Science, 2006, 313(5791): 1257-1261.

褚赛赛, 李洪云, 王树峰, 杨宏, 龚旗煌. 激光脉冲整形在微纳光学系统中的应用研究进展[J]. 光学学报, 2016, 36(10): 1026007. Chu Saisai, Li Hongyun, Wang Shufeng, Yang Hong, Gong Qihuang. Development of Ultrashort Laser Pulse Shaping Technique and Its Applications in Micro- and Nano-Optical Systems[J]. Acta Optica Sinica, 2016, 36(10): 1026007.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!