强激光与粒子束, 2017, 29 (8): 082003, 网络出版: 2017-06-30   

激光-近临界等离子体高能高亮度X射线的产生

Production of bright high-energy X-rays based on interaction of laser and near-critical-density plasma
作者单位
中国工程物理研究院 激光聚变研究中心, 等离子体物理重点实验室, 四川 绵阳 621900
摘要
基于激光驱动超热电子产生的高品质X射线源是高能量密度实验中有效的诊断技术手段, 对辐射源亮度、穿透性和时空分辨率等特性具有极高的要求。结合粒子模拟和蒙特卡罗模拟研究, 首先利用近临界密度等离子体实现了激光自聚焦通道中的大电量高能电子加速, 通过直接加速机制产生了电量超过600 nC、有效温度可达15 MeV的高能电子; 以此为基础提高电子-光子能量转换率, 有效优化了光子能量和产额, 并通过一定的转换靶参数优化方案产生了微焦点(FWHM小于200 μm)、高能、高亮度X射线, 为高空间分辨(小于200 μm)成像诊断提供了很好的途径, 有望早日实现激光等离子体轫致辐射单脉冲瞬态照相的实际应用。
Abstract
Laser-driven electrons can produce high-quality X-ray source with broad applications including measurement of shock-compressed matters, inertial confinement fusion and laboratory astrophysics. For high energy density experiments, bright high-resolution diagnosis radiation is required. To meet the requirement, it is decisive to optimize the production of hot electrons and radiation emission. In this paper, we combine the Particle-In-Cell and Monte Carlo simulation, firstly use near-critical-density plasma to accelerate high-charge energetic electrons (exceeds 600 nC, 15 MeV) by direct laser acceleration in self-focusing channel, then get enhanced energy conversion between electrons and photons, finally obtain brilliant micro-spot (FWHM<200 μm) high-energy X-rays via parameter optimization. Our findings provide a promising access to high-spatial-resolution (<200 μm) diagnostics, and it is hopeful to realize single-pulse transient imaging based on laser-plasma bremsstrahlung source.
参考文献

[1] Brambrink E, Wei H G, Barbrel B, et al. X-ray source studies for radiography of dense matter[J].Phys Plasmas, 2009, 16: 033101.

[2] Le Pape S, Neumayer P, Fortmann C, et al. X-ray radiography and scattering diagnosis of dense shock-compressed matter[J].Phys Plasmas, 2010, 17: 056309.

[3] Glinec Y, Faure J, Dain L, et al. High-resolution γ-ray radiography produced by a laser-plasma driven electron source[J].Phys Rev Lett, 2005, 94: 025003.

[4] Park H S, Maddox B R, Giraldez E, et al. High-resolution 17~75 keV backlighters for high energy density experiments[J]. Phys Plasmas, 2008, 15: 072705.

[5] 韩丹, 赵宗清, 单连强, 等. 快点火背光照相数值模拟[J]. 强激光与粒子束, 2012, 24(8): 1861-1866. (Han Dan, Zhao Zongqing, Shan lianqiang, et al. Monte Carlo simulation on X-ray backlighting imaging in fast ignition research. High Power Laser and Particle Beams, 2012, 24(8): 1861-1866)

[6] Huser G, Casner A, Masse L, et al. Reduced ablative Rayleigh-Taylor growth measurements in indirectly driven laminated foils[J].Phys Plasmas, 2011, 18: 012706.

[7] Courtois C, Compant La Fontaine A, Landoas O, et al. Effect of plasma density scale length on the properties of bremsstrahlung X-ray sources created by picosecond laser pulses[J]. Phys Plasmas, 2009, 16: 013105.

[8] Courtois C, Edwards R, Compant La Fontaine A, et al. High-resolution multi-MeV X-ray radiography using relativistic laser-solid interaction[J]. Phys Plasmas, 2011, 18: 023101.

[9] Courtois C, Edwards R, Compant La Fontaine A, et al. Characterisation of a MeV Bremsstrahlung X-ray source produced from a high intensity laser for high areal density object radiography[J]. Phys Plasmas, 2013, 20: 083114.

[10] Pukhov A, Sheng Z M, Meyer-ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Phys Plasmas, 1999, 6(7): 2847-2854.

[11] Gahn C, Tsakiris G D, Pukhov A, et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels[J]. Phys Rev Lett, 1999, 83(23): 4772-4775.

[12] Mangles S, Walton B, Tzoufras M, et al. Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma[J]. Phys Rev Lett, 2005, 94: 245001.

[13] Gu Y J, Kong Q, Li Y Y, et al. Steady plasma channel formation and particle acceleration in an interaction of an ultraintense laser with near-critical density plasma[J]. Phys Plasmas, 2011, 18: 030704.

[14] Nieter C, Cary J R. VORPAL: a versatile plasma simulation code[J]. J Comput Phys, 2004, 196(2): 448-473.

[15] Wilks S C, Kruer W L, Tabak M, et al. Absorption of ultra-intense laser pulses[J]. Phys Rev Lett, 1992, 69: 1383.

[16] 邓力, 雷炜, 李刚, 等. 高分辨率粒子输运MC软件JMCT开发[J]. 核动力工程, 2014, 35(s2): 221-223. (Deng Li, Lei Wei, Li Gang, et al. Development of high resolution particle transport Monte Carlo code JMCT. Nuclear Power Engineering, 2014, 35(s2): 221-223)

[17] 徐妙华, 梁天骄, 张杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子[J].物理学报, 2006, 55(5): 2357-2363. (Xu Miaohua, Liang Tianjiao, Zhang Jie. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions. Acta Physica Sinica, 2006, 55(5): 2357-2363)

杨月, 赵宗清, 郑建华, 张天奎. 激光-近临界等离子体高能高亮度X射线的产生[J]. 强激光与粒子束, 2017, 29(8): 082003. Yang Yue, Zhao Zongqing, Zheng Jianhua, Zhang Tiankui. Production of bright high-energy X-rays based on interaction of laser and near-critical-density plasma[J]. High Power Laser and Particle Beams, 2017, 29(8): 082003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!