Frontiers of Optoelectronics, 2017, 10 (3): 239, 网络出版: 2020-07-23  

Research and developments of laser assisted methods for translation into clinical application

Research and developments of laser assisted methods for translation into clinical application
作者单位
1 Laser-Forschungslabor, LIFE-Center, Hospital of University, Ludwig-Maximilians University Munich, Munich, Germany
2 Department of Urology, Hospital of University, Ludwig-Maximilians University Munich, Munich, Germany
3 Department of Vascular Surgery, Diakonie Klinikum, Schw?bisch Hall, Germany
4 Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald- Insel Riems, Germany
5 Labor für Tumorimmunologie, LIFE-Center, Hospital of University, Ludwig-Maximilians University Munich, Munich, Germany
摘要
Abstract
Biophotonics and laser medicine are very dynamic and continuously increasing fields ecologically as well as economically. Direct communication with medical doctors is necessary to identify specific requests and unmet needs. Information on innovative, new or renewed techniques is necessary to design medical devices for introduction into clinical application and finally to become established after positive clinical trials as well as medical approval. The long-term endurance in developing light based innovative clinical concepts and devices are described based on the Munich experience. Fluorescence technologies for laboratory medicine to improve noninvasive diagnosis or for online monitoring are described according with new approaches in improving photodynamic therapeutic aspects related to immunology. Regarding clinically related thermal laser applications, the introduction of new laser wavelengths and laser parameters showed potential in the treatment of varicose veins as well as in lithotripsy. Such directly linked research and development are possible when researchers and medical doctors perform their daily work in immediate vicinity, thus have the possibility to share their ideas in meetings by day.
参考文献

[1] Labbé R F, Vreman H J, Stevenson D K. Zinc protoporphyrin: ametabolite with a mission. Clinical Chemistry, 1999, 45(12): 2060- 2072

[2] Hennig G, Gruber C, Vogeser M, Stepp H, Dittmar S, Sroka R, Brittenham G M. Dual-wavelength excitation for fluorescencebased quantification of zinc protoporphyrin IX and protoporphyrin IX in whole blood. Journal of Biophotonics, 2014, 7(7): 514-524

[3] Hennig G, Homann C, Teksan I, Hasbargen U, Hasmüller S, Holdt L M, Khaled N, Sroka R, Stauch T, Stepp H, Vogeser M, Brittenham G M. Non-invasive detection of iron deficiency by fluorescence measurement of erythrocyte zinc protoporphyrin in the lip. Nature Communications, 2016, 7: 10776

[4] Balwani M, Desnick R J. The porphyrias: advances in diagnosis and treatment. Blood, 2012, 120(23): 4496-4504

[5] Enriquez de Salamanca R, Sepulveda P, Moran M J, Santos J L, Fontanellas A, Hernández A. Clinical utility of fluorometric scanning of plasma porphyrins for the diagnosis and typing of porphyrias. Clinical and Experimental Dermatology, 1993, 18(2): 128-130

[6] Bonkovsky H L, Maddukuri V C, Yazici C, Anderson K E, Bissell D M, Bloomer J R, Phillips J D, Naik H, Peter I, Baillargeon G, Bossi K, Gandolfo L, Light C, Bishop D, Desnick R J. Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium.The American Journal of Medicine, 2014, 127(12): 1233-1241

[7] Karim Z, Lyoumi S, Nicolas G, Deybach J C, Gouya L, Puy H. Porphyrias: a 2015 update. Clinics and Research in Hepatology and Gastroenterology, 2015, 39(4): 412-425

[8] Lang A, Stepp H, Homann C, Hennig G, Brittenham G M, Vogeser M. Rapid screening test for porphyria diagnosis using fluorescence spectroscopy. SPIE Proceedings, 2015, 9537: 953706

[9] imington C. Spectral-absorption coefficients of some porphyrins in the Soret-band region. The Biochemical Journal, 1960, 75(3): 620- 623

[10] Westerlund J, Pudek M, Schreiber W E. A rapid and accurate spectrofluorometric method for quantification and screening of urinary porphyrins. Clinical Chemistry, 1988, 34(2): 345-351

[11] Markwardt N A, Haj-Hosseini N, Hollnburger B, Stepp H, Zelenkov P, Rühm A. 405 nm versus 633 nm for protoporphyrin IX excitation in fluorescence-guided stereotactic biopsy of brain tumors. Journal of Biophotonics, 2016, 9(9): 901-912

[12] Markwardt N A, Stepp H, Franz G, Sroka R, Goetz M, Zelenkov P, Rühm A. Remission spectrometry for blood vessel detection during stereotactic biopsy of brain tumors. Journal of Biophotonics, 2016

[13] Gebhart S C, LinWC, Mahadevan-Jansen A. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Physics in Medicine and Biology, 2006, 51(8): 2011-2027

[14] Yaroslavsky A N, Schulze P C, Yaroslavsky I V, Schober R, Ulrich F, Schwarzmaier H J. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Physics in Medicine and Biology, 2002, 47 (12): 2059-2073

[15] Johansson A, Palte G, Schnell O, Tonn J C, Herms J, Stepp H. 5- Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors. Photochemistry and Photobiology, 2010, 86(6): 1373-1378

[16] Prahl S A. Optical Absorption of Hemoglobin, tabulated data compiled from various sources (1999), http://omlc.ogi.edu/spectra/ hemoglobin

[17] W rdell K, Hemm-Ode S, Rejmstad P, Zsigmond P. Highresolution laser Doppler measurements of microcirculation in the deep brain structures: a method for potential vessel tracking. Stereotactic and Functional Neurosurgery, 2016, 94(1): 1-9

[18] Johansson A, Faber F, Kniebühler G, Stepp H, Sroka R, Egensperger R, Beyer W, Kreth F W. Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis. Lasers in Surgery and Medicine, 2013, 45(4): 225-234

[19] Rühm A, Stepp H, Beyer W, Hennig G, Pongratz T, Sroka R, Schnell O, Tonn J C, Kreth F W. 5-ALA based photodynamic management of glioblastoma. Proceedings of the Society for Photo- Instrumentation Engineers, 2014, 8928: 89280E

[20] Wang L V, Wu H I. Biomedical Optics: Principles and Imaging. New Jersey: Wiley, 2007

[21] Beck T J, Kreth F W, Beyer W, Mehrkens J H, Obermeier A, Stepp H, Stummer W, Baumgartner R. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers in Surgery and Medicine, 2007, 39(5): 386-393

[22] Castano A P, Mroz P, Hamblin M R. Photodynamic therapy and anti-tumour immunity. Nature Reviews. Cancer, 2006, 6(7): 535- 545

[23] Gollnick S O. Photodynamic therapy and antitumor immunity. Journal of the National Comprehensive Cancer Network: JNCCN, 2012, 10(Suppl 2): S40-S43

[24] Korbelik M, Banáth J, Zhang W. Mreg activity in tumor response to photodynamic therapy and photodynamic therapy-generated cancer vaccines. Cancers (Basel), 2016, 8(10): E94

[25] Korbelik M. Induction of tumor immunity by photodynamic therapy. Journal of Clinical Laser Medicine & Surgery, 1996, 14 (5): 329-334

[26] Gollnick S O, Vaughan L, Henderson B W. Generation of effective antitumor vaccines using photodynamic therapy. Cancer Research, 2002, 62(6): 1604-1608

[27] Korbelik M, Banáth J, Saw K M. Immunoregulatory cell depletion improves the efficacy of photodynamic therapy-generated cancer vaccines. International Journal of Molecular Sciences, 2015, 16(11): 27005-27014

[28] Garg A D, Vandenberk L, Koks C, Verschuere T, Boon L, Van Gool S W, Agostinis P. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of highgrade glioma. Science Translational Medicine, 2016, 8(328): 328ra27

[29] Johansson A, Stepp H, Beck T, Beyer W, Pongratz T, Sroka R, Meinel T, Stummer W, Kreth FW, Tonn J C, Baumgartner R. ALAmediated fluorescence- guided resection (FGR) and PDT of glioma. In: Proceedings of 12th World Congress of the International Photodynamic Association: Photodynamic Therapy: Back to the Future.2009, 7380

[30] Schwartz C, Ruehm A, Tonn J C, Kreth S, Kreth F W. Interstitial photodynamic therapy of de-novo glioblastoma multiforme WHO IV:a feasibility study. In: Proceedings of 66th Annual Meeting of the Society of Neuro-Oncology. 2015, SURG-25

[31] Stummer W, Beck T, Beyer W, Mehrkens J H, Obermeier A, Etminan N, Stepp H, Tonn J C, Baumgartner R, Herms J, Kreth FW. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. Journal of Neuro-Oncology, 2008, 87(1): 103-109

[32] Kammerer R, Buchner A, Palluch P, Pongratz T, Oboukhovskij K, Beyer W, Johansson A, Stepp H, Baumgartner R, Zimmermann W. Induction of immune mediators in glioma and prostate cancer cells by non-lethal photodynamic therapy. PLoS One, 2011, 6(6): e21834

[33] Etminan N, Peters C, Lakbir D, Bünemann E, B rger V, Sabel M C, H nggi D, Steiger H J, Stummer W, Sorg R V. Heat-shock protein 70-dependent dendritic cell activation by 5-aminolevulinic acidmediated photodynamic treatment of human glioblastoma spheroids in vitro. British Journal of Cancer, 2011, 105(7): 961-969

[34] Navarro L, Min R J, Boné C. Endovenous laser: a new minimally invasive method of treatment for varicose veins-preliminary observations using an 810 nm diode laser. Dermatol Surgery, 2001, 27(2): 117-122

[35] Min R J, Zimmet S E, Isaacs M N, Forrestal M D. Endovenous laser treatment of the incompetent greater saphenous vein. Journal of Vascular and Interventional Radiology: JVIR, 2001, 12(10): 1167- 1171

[36] Mordon S R, Wassmer B, Zemmouri J. Mathematical modeling of endovenous laser treatment (ELT). Biomedical Engineering Online, 2006, 5(1): 26

[37] Minaev V P, Sokolov A L, Lyadov K V, Lutsenko M M, Zhilin K M. Endovenous laser treatment (EVLT) of safernous vein reflux with 1.56 mm laser. Proceedings of the Society for Photo- Instrumentation Engineers, 2009, 7373: 73731D

[38] Schmedt C G, Sroka R, Steckmeier S, Meissner O A, Babaryka G, Hunger K, Ruppert V, Sadeghi-Azandaryani M, Steckmeier B M. Investigation on radiofrequency and laser (980 nm) effects after endoluminal treatment of saphenous vein insufficiency in an ex-vivo model. European Journal of Vascular and Endovascular Surgery, 2006, 32(3): 318-325

[39] Sroka R,Weick K, Steckmaier S, Steckmaier B, Blagova R, Sroka I, Sadeghi-Azandaryani M, Maier J, Schmedt C G. The ox-foot-model for investigating endoluminal thermal treatment modalities of varicosis vein diseases. ALTEX, 2012, 29(4): 403-410

[40] Sroka R,Weick K, Sadeghi-Azandaryani M, Steckmeier B, Schmedt C G. Endovenous laser therapy-application studies and latest investigations. Journal of Biophotonics, 2010, 3(5-6): 269-276

[41] Sroka R, Pongratz T, Siegrist K, Burgmeier C, Barth H D, Schmedt C G. Endovenous laser application. Strategies to improve endoluminal energy application. Phlebologie, 2013, 42(3): 121-129

[42] Sroka R, Schmedt C G, Steckmeier S, Meissner O A, Beyer W, Babaryka G, Steckmeier B. Ex-vivo investigation of endoluminal vein treatment by means of radiofrequency and laser irradiation. Medical Laser Application, 2006, 21(1): 15-22

[43] Gloviczki P, Comerota A J, Dalsing M C, Eklof B G, Gillespie D L, GloviczkiML, Lohr JM, McLafferty R B, MeissnerMH, MuradM H, Padberg F T, Pappas P J, Passman M A, Raffetto J D, Vasquez M A, Wakefield T W. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum. Journal of Vascular Surgery, 2011, 53(5Suppl): 2S-48S

[44] National Guideline. Varicose veins in the legs. The diagnosis and management of varicose veins. Agency for Healthcare Research and Quality (AHRQ), Rockville MD

[45] Davidson S R H, Vitkin I A, Sherar M D, Whelan W M. Characterization of measurement artefacts in fluoroptic temperature sensors: implications for laser thermal therapy at 810 nm. Lasers in Surgery and Medicine, 2005, 36(4): 297-306

[46] Klingenberg M, Bohris C, Niemz M H, Bille J F, Kurek R, Wallwiener D. Multifibre application in laser-induced interstitial thermotherapy under on-line MR control. Lasers in Medical Science, 2000, 15(1): 6-14

[47] Grattan K T V, Selli R K, Palmer A W. Ruby fluorescence wavelength division fiber-optic temperature sensor. Review of Scientific Instruments, 1987, 58(7): 1231-1234

[48] Sroka R, Hemmerich M, Pongratz T, Siegrist K, Brons J, Linden S, Meier R, Schmedt C G. Endovenous laser application. Possibilities of online monitoring. Phlebologie, 2013, 42(3): 131-138

[49] Bader M J, Pongratz T, Khoder W, Stief C G, Herrmann T, Nagele U, Sroka R. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance. World Journal of Urology, 2015, 33(4): 471-477

[50] Simmons W N, Cocks F H, Zhong P, Preminger G. A composite kidney stone phantom with mehanical properties controllable over the range of properties of human kidney stones. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(1): 130-133

[51] Esch E, Simmons W N, Sankin G, Cocks H F, Preminger G M, Zhong P. A simple method for fabricating artificial kidney stones of different physical properties. Urological Research, 2010, 38(4): 315-319

[52] Sea J, Jonat L M, Chew B H, Qiu J, Wang B, Hoopman J, Milner T, Teichman J M. Optimal power settings for Holmium:YAG lithotripsy. The Journal of urology, 2012, 187(3): 914-919

[53] Kang H W, Lee H, Teichman J M H, Oh J, Kim J, Welch A J. Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy. Lasers in Surgery and Medicine, 2006, 38(8): 762-772

[54] Sroka R, Stepp H, Hennig G, Brittenham G M, Rühm A, Lilge L. Medical laser application: translation into the clinics. Journal of Biomedical Optics, 2015, 20(6): 061110

Ronald SROKA, Nikolas DOMINIK, Max EISEL, Anna ESIPOVA, Christian FREYMüLLER, Christian HECKL, Georg HENNIG, Christian HOMANN, Nicolas HOEHNE, Robert KAMMERER, Thomas KELLERER, Alexander LANG, Niklas MARKWARDT, Heike POHLA, Thomas PONGRATZ, Claus-Georg SCHMEDT, Herbert STEPP, Stephan STR?BL, Keerthanan ULAGANATHAN, Wolfgang ZIMMERMANN, Adrian RUEHM. Research and developments of laser assisted methods for translation into clinical application[J]. Frontiers of Optoelectronics, 2017, 10(3): 239. Ronald SROKA, Nikolas DOMINIK, Max EISEL, Anna ESIPOVA, Christian FREYMüLLER, Christian HECKL, Georg HENNIG, Christian HOMANN, Nicolas HOEHNE, Robert KAMMERER, Thomas KELLERER, Alexander LANG, Niklas MARKWARDT, Heike POHLA, Thomas PONGRATZ, Claus-Georg SCHMEDT, Herbert STEPP, Stephan STR?BL, Keerthanan ULAGANATHAN, Wolfgang ZIMMERMANN, Adrian RUEHM. Research and developments of laser assisted methods for translation into clinical application[J]. Frontiers of Optoelectronics, 2017, 10(3): 239.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!