光学学报, 2014, 34 (s1): s114004, 网络出版: 2014-06-24  

氧碘化学激光器功率稳定性研究

Experimental Investigation on Power Stabilization of Chemical Oxygen Iodine Laser
作者单位
西北核技术研究所, 陕西 西安 710024
摘要
根据简单饱和增益模型建立的氧碘化学激光器功率模型,理论分析了氧碘化学激光器功率稳定性影响因素。结合氧碘化学激光器实际监测参数,研究了氯气压力和碘文氏管压力对氧碘化学激光器功率稳定性的影响。实验结果表明,在1~6 s时间段内,随着出光时间的变长,氯气压力和碘文氏管压力的均方根(RMS)值变小,同时,较小的氯气压力和碘文氏管RMS值,相应的出光功率的RMS值也会较小,这说明提高氯气压力和碘文氏管压力的稳定性可以提高氧碘激光器出光功率的稳定性。
Abstract
The modeling of chemical oxygen iodine laser power using a simplified saturation model is established. The main factors influencing the power of chemical oxygen iodine laser have been studied theoretically. According to the testing parameter of chemical oxygen iodine laser, the power stability caused by chlorine and iodine pressure has been analyzed. It is found that the root mean square (RMS) of chlorine and iodine venturitube pressure becomes small as the laser time increasing between 1 and 6 seconds, at the same time, the more RMS of chlorine, iodine venturitube pressure, the more RMS of chemical oxygen iodine laser power. Chemical oxygen iodine laser power stabilization increases by improving the pressure stabilization of chlorine and iodine venturitube.
参考文献

[1] 庄琦, 桑凤亭, 周大正. 短波长化学激光[M]. 北京: 国防工业出版社, 1997. 17-22.

    Zhuang Qi, Sang Fengting, Zhou Dazheng. Short Wavelength Chemical Laser [M]. Beijing: National Denfense Industry Press, 1997. 17-22.

[2] 任国光, 黄裕年. 美国高能激光武器的发展战略(上篇) [J]. 激光技术, 2001, 25(4): 241-245.

    Ren Guoguang, Huang Yunian. Developing strategic of American high power laser weapons: part1 [J]. Laser Technology, 2001, 25(4): 241-245.

[3] 张政, 曹益平, 沈志康. 基于故障树的氧碘化学激光器故障分析 [J]. 强激光与粒子束, 2011, 23(12): 3321-3324.

    Zhang Zheng, Cao Yiping, Shen Zhikang. Fault analysis of chemical oxygen iodine laser based on fault tree [J]. High Power Laser and Particle Beams, 2011, 23(12): 3321-3324.

[4] 佘辉, 谭胜. 高能激光武器的发展和应用前景 [J]. 红外与激光工程, 2002, 31(3): 267-271.

    She Hui, Tan Sheng. Development and application prospects of high-nergy laser weapon [J]. Infrared and Laser Engineering, 2002, 31(3): 267-271.

[5] 桑风亭, 金玉奇, 多丽萍. 化学激光及其应用 [M]. 北京: 化学工业出版社, 2006. 242-245.

    Sang Fengting, Jin Yuqi, Duo Liping. Chemical Laser and Application [M]. Beijing: Chemical Industry Press, 2006. 242-245.

[6] 贾淑芹, 怀英, 吴克雄. 超音速化学氧碘激光器能量提取对流场影响的数值研究 [J]. 中国激光, 2012, 39(4): 0402001.

    Jia Suqin, Huai Yin, Wu Kexiong. Numerical study of effects of power extraction on flow fields in supersonic chemical oxygen iodine lasers [J]. Chinese J Lasers, 2012, 39(4): 0402001.

[7] 怀英, 吴克雄, 贾淑芹. 化学氧碘激光器内流场结构对出光性能影响的数值分析 [J]. 中国激光, 2013, 40(11): 1102005.

    Huai Yin, Wu Kexiong, Jia Suqin. Influence of flow structures on supersonic chemical oxygen-iodine laser output with numerical analysis [J]. Chinese J Lasers, 2013, 40(11): 1102005.

[8] W C Solomon, D L Carroll. Commercial applications for COIL [C]. SPIE, 2000, 3387: 137-151.

[9] K A Truesdell, C A Helms, S Frerking, et al.. COIL performance modeling and recent advances in diagnostic measurements [C]. SPIE, 1997, 3092: 676-681.

[10] D A Copeland, T T Yang. Two-dimensional source flow gain model for the chemical oxygen-iodine laser [C]. SPIE, 1997, 2989: 90-108.

[11] 刘万发, 赵彤, 徐文刚. 碘气流穿透深度和碘流量对COIL激光输出功率的影响 [J]. 强激光与粒子束, 2004, 16(12): 1506-1508.

    Liu Wanfa, Zhao Tong, Xu Wengang. Influence of iodine flow penetration depth and flow rate on COIL output power [J]. High Power Laser and Particle Beams, 2004, 16(12): 1506-1508.

张政, 任伟艳, 关小伟. 氧碘化学激光器功率稳定性研究[J]. 光学学报, 2014, 34(s1): s114004. Zhang Zheng, Ren Weiyan, Guan Xiaowei. Experimental Investigation on Power Stabilization of Chemical Oxygen Iodine Laser[J]. Acta Optica Sinica, 2014, 34(s1): s114004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!