光电技术应用, 2018, 33 (3): 42, 网络出版: 2018-09-11   

640×512中波红外成像系统实时信号处理关键技术

Key Techniques of Real Time Signal Processing for 640×512 MWIR Imaging System
作者单位
中国电子科技集团公司光电研究院, 天津 300308
摘要
影响制冷型中波红外焦平面探测器图像质量的因素主要包括响应的非均匀性、响应的漂移特性和盲元等。因此, 在红外焦平面成像系统中要进行实时的非均匀性校正、漂移补偿和盲元替代等信号处理。首先, 设计一套高帧频低噪声640×512像元的制冷型中波红外成像系统, 并进行动态范围标定, 实现其在全动态范围内NETD小于30 mK。接着, 针对焦平面像元的响应特性, 研究了适用于红外成像系统的非均匀性和盲元的校正方法, 提出了基于辐射定标和场景融合的非均匀校正、盲元检测及替代算法。最后, 进行外场红外图像数据采集。经实验验证, 其图像校正效果优良, 易于实现, 且具有较强的环境适应性。
Abstract
The factors affecting the image quality of refrigerating medium wave infrared (MWIR) focal plane detectors include non-uniformity of response, drift characteristics of response and blind pixel. So signal processing in real time such as non-uniformity correction, drift compensation and blind pixel substitution is required in infrared focal plane imaging system. At first, a refrigerating MWIR image system with high frame frequency, low noise and 640×512 pixels is designed. And the dynamic range is calibrated to implement the NETD≤ 30 mK in full dynamic range. And then, according to the response characteristics of the pixels in the focal plane, the non-uniformity and blind pixel correction method suitable for the infrared imaging system are researched. A non-uniformity correction, blind pixel detection and substitution algorithm based on radiation calibration and scene fusion is put forward. At last, the infrared image data is collected in field experiment. Experimental results show that the method has a good image correction effect, easy to be implemented, and it has strong environmental adaptability.
参考文献

[1] 常本康, 蔡毅. 红外成像阵列与系统[M]. 北京: 科学出版社, 2006: 3-8.

[2] 曾戈虹. HgCdTe红外探测器性能分析[J]. 红外技术, 2012, 34(1): 1-3, 15.

[3] 许照东, 刘欣, 尉钟. 采用640×512元探测器的机载红外系统设计[J]. 南京航空航天大学学报, 2007, 39(4): 524 -529.

[4] 张洋, 张记龙, 杜旋燕. 基于HgCdTe红外探测器的微弱信号检测电路设计[J]. 应用光学, 2011, 32(4): 779-783.

[5] Thomas Svensson, Ingmar Renhorn. A study of the radiometric calibration of spectral bands in the mid wave infrared (MWIR) spectral range 1.5-5.5 μm[J]// SPIE, 2009, 7300, 7300Z.

[6] 李宪圣, 任建伟, 张立国. 大口径红外光电系统现场辐射定标装置的研制[J].光电子·激光, 2006, 17(2): 175-178.

[7] 刘宁, 陈钱, 顾国华. 640×512制冷探测器非线性响应分析[J]. 光子学报, 2011, 40(6): 921-925.

[8] Ratliff B M, Hayat M M, Tyo J S. Generalized algebraic scene-based non-uniformity correction algorithm[J]. J Opt Soc Am A, 2005, 22(2): 239-249.

[9] 冷寒冰, 汤心溢, 彭鼎祥. 基于积分时间调整的红外焦平面阵列非均匀校正算法的研究[J]. 2007, 26(4): 246-250.

[10] 陈大川, 刘缠牢, 郑阳光. 红外焦平面阵列盲元检测及补偿算法[J]. 激光与红外, 2008, 38(12): 1215-1217.

汪晓洁, 张廷玉. 640×512中波红外成像系统实时信号处理关键技术[J]. 光电技术应用, 2018, 33(3): 42. WANG Xiao-jie, ZHANG Ting-yu. Key Techniques of Real Time Signal Processing for 640×512 MWIR Imaging System[J]. Electro-Optic Technology Application, 2018, 33(3): 42.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!