光学 精密工程, 2013, 21 (3): 598, 网络出版: 2013-04-08   

超快激光成丝现象的多丝控制

Control of multiple filamentation induced by ultrafast laser pulses
作者单位
南开大学 现代光学研究所 光学信息技术科学教育部重点实验室, 天津 300071
引用该论文

高慧, 赵佳宇, 刘伟伟. 超快激光成丝现象的多丝控制[J]. 光学 精密工程, 2013, 21(3): 598.

GAO Hui, ZHAO Jia-yu, LIU Wei-wei. Control of multiple filamentation induced by ultrafast laser pulses[J]. Optics and Precision Engineering, 2013, 21(3): 598.

参考文献

[1] CHIN S L, BRODEUR A, PETIT S, et al.. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser) [J]. J. Nonlinear Optic. Phys. Mat., 1999, 8(1): 121-146.

[2] MLEJNEK M, WRIGHT E M , MOLONEY J V. Dynamic spatial replenishment of femtosecond pulses propagating in air [J]. Opt. Lett., 1998, 23(5): 382-384.

[3] LIU W, PETIT S, BECKER A, et al.. Intensity clamping of a femtosecond laser pulse in condensed matter [J]. Opt. Commun., 2002, 202(1-3): 189-197.

[4] CHIN S L. Femtosecond Laser Filamentation [M]. Berlin: Springer, 2010.

[5] CHIN S L, HOSSEINI S A, LIU W, et al.. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges [J]. Can. J. Phys., 2005, 83(9): 863-905.

[6] COUAIRON A, MYSYROWICZ A. Femtosecond filamentation in transparent media [J]. Phys. Rep., 2007, 441(2-4): 47-189.

[7] BERGL, SKUPIN S, NUTER R, et al.. Ultrashort filaments of light in weakly ionized, optically transparent media [J]. Rep. Prog. Phys., 2007, 70(10): 1633-1713.

[8] BJOT P, KASPARIAN J, HENIN S, et al.. Higher-order kerr terms allow ionization-free filamenatation in gases [J]. Phys. Rev. Lett., 2010, 104(10): 103903.

[9] BJOT P, HERTZ E, KASPARIAN J, et al.. Transition from plasma-driven to kerr-driven laser filamentation [J]. Phys. Rev. Lett., 2011, 106(24): 243902 (2011).

[10] WANG Z X, ZHANG C J, LIU J S, et al.. Femtosecond filamentation in argon and higher-order nonlinearities [J]. Opt. Lett., 2011, 36(12): 2336-2338.

[11] GAETA A L. Catastrophic collapse of ultrashort pulses[J]. Phys. Rev. Lett., 2000, 84(16): 3582-3585.

[12] AKZBEK N, SCALORA M, BOWDEN C M, et al.. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air [J]. Opt. Commun., 2001, 191(3-6): 353-362.

[13] AKZBEK N, IWASAKI A, BECKER A, et al.. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses [J]. Phys. Rev. Lett., 2002, 89(14): 143901.

[14] NIBBERING E T J, CURLEY P F, GRILLON G, et al.. Conical emission from self-guided femtosecond pulses in air [J]. Opt. Lett., 1996, 21(1): 62-64.

[15] KASPARIAN J, SAUERBREY R, MONDELAIN D, et al.. Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere [J]. Opt. Lett., 2000, 25(18): 1397-1399.

[16] BRODEUR A, CHIN S L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media [J]. J. Opt. Soc. Am. B, 1999, 16(4): 637-650.

[17] LIU J S, SCHROEDER H, CHIN S L, et al.. Space-frequency coupling, conical waves, and small-scale filamentation in water [J]. Phys. Rev. A, 2005, 72(5): 053817.

[18] LIU J S, SCHROEDER H, CHIN S L, et al.. Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation [J]. Opt. Express, 2005, 13(25): 10248-10259.

[19] WANG Z X, LIU J S, LI R X, et al.. Wavefront control to generate ultraviolet supercontinuum by filamentation of few-cycle laser pulses in argon [J]. Opt. Lett., 2010, 35(2): 163-165.

[20] WANG Z X, LIU J S, LI R X, et al.. Supercontinuum generation and pulse compression from gas filamentation of femtosecond laser pulses with different durations [J]. Opt. Express, 2009, 17(16): 13841-13850.

[21] KANDIDOV V P, KOSAREVA O G, GOLUBTSOV I S, et al.. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation) [J]. Appl. Phys. B, 2003, 77(2-3): 149-165.

[22] KASPARIAN J, SAUERBREY R, CHIN S L. The critical laser intensity of self-guided light filaments in air [J]. Appl. Phys. B, 2000, 71(6): 877-879.

[23] HAURI C P, KORNELIS W, HELBING F W, et al.. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation [J]. Appl. Phys. B, 2004, 79(6): 673-677.

[24] CHEN X, LENG Y, LIU J, et al.. Pulse self-compression in normally dispersive bulk media [J]. Opt. Commun., 2006, 259(1): 331-335.

[25] LIU J S, LI R X, XU Z Z. Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion [J]. Phys. Rev. A, 2006, 74(4): 043801.

[26] KASPARIAN J, RODRIGUEZ M, MJEAN G, et al.. White-light filaments for atmospheric analysis [J]. Science, 2003, 301(5629): 61-64.

[27] KASPARIAN J, WOLF J-P. Physics and applications of atmospheric nonlinear optics and filamentation [J]. Opt. Express, 2008, 16(1): 466-493.

[28] XU H L, CHIN S L. Femtosecond laser filamentation for atmospheric sensing [J]. Sensors, 2011, 11(1): 32-53.

[29] DAVIS K M, MIURA K, SUGIMOTO N, et al.. Writing waveguides in glass with a femtosecond laser [J]. Opt. Lett., 1996, 21(21): 1729-1731.

[30] SALIMINIA A, NGUYEN N T, NADEAU M-C, et al.. Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses [J]. J. Appl. Phys., 2003, 93(7): 3724-3728.

[31] TZORTZAKIS S, SUDRIE L, FRANCO M, et al.. Self-guided propagation of ultrashort IR laser pulses in fused silica [J]. Phys. Rev. Lett., 2001, 87(21): 213902.

[32] AKTURK S, COUAIRON A, FRANCO M, et al.. Spectrogram representation of pulse self compression by filamentation [J]. Opt. Express, 2008, 16(22): 17626-17636.

[33] COUAIRON A, BIEGERT J, HAURI C P, et al.. Self-compression of ultra-short laser pulses down to one optical cycle by filamentation [J]. J. Mod. Opt., 2008, 53(1-2): 75-85.

[34] KOSAREVA O G, MURTAZIN I N, PANOV N A, et al.. Pulse shortening due to filamentation in transparent medium [J]. Laser Phys. Lett., 2007, 4(2): 126-132.

[35] ROHWETTER P, KASPARIAN J, STELMASZCZYK K, et al.. Laser-induced water condensation in air [J]. Nature Photonics, 2010, 4(7): 451-456.

[36] JU J, LIU J, WANG C, et al.. Laser-filamentation-induced condensation and snow formation in a cloud chamber [J]. Opt. Lett., 2012, 37(7): 1214-1216.

[37] JU J J, LIU J S, WANG C, et al.. Effects of initial humidity and temperature on laser-filamentation-induced condensation and snow formation [J]. Appl. Phys. B, 2012: 1-6.

[38] CHIN S L, AKZBEK N, PROULX A, et al.. Transverse ring formation of a focused femtosecond laser pulse propagating in air [J]. Opt. Commun., 2001, 188(1-4): 181-186.

[39] LIU W, GRAVEL J F, THBERGE F, et al.. Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air [J]. Appl. Phys. B, 2005, 80(7): 857-860.

[40] KANDIDOV V P, KOSAREVA O G, KOLTUNA A A. Nonlinear-optical transformation of a high-power femtosecond laser pulse in air [J]. Quantum Electron., 2003, 33(1): 69-75.

[41] BESPALOV V I, TALANOV V I. Filamentary structure of light beams in nonlinear liquids [J]. JETP Lett., 1966, 3(12): 307-312.

[42] CHIN S L, TALEBPOUR A, YANG J, et al.. Filamentation of femtosecond laser pulses in turbulent air [J]. Appl. Phys. B, 2002, 74(1):67-76.

[43] CHIN S L, PETIT S, LIU W, et al.. Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air [J]. Opt. Commun., 2002, 210(3): 329-341.

[44] HOSSEINI S A, LUO Q, FERLAND B, et al.. Competition of multiple filaments during the propagation of intense femtosecond laser pulses [J]. Phys. Rev. A, 2004, 70(3): 033802.

[45] MLEJNEK M, KOLESIK M, MOLONEY J V, et al.. Optically turbulent femtosecond light guide in air [J]. Phys. Rev. Lett., 1999, 83(15): 2938-2941.

[46] COOK K, KAR A K, LAMB R A. White-light supercontinuum interference of self-focused filaments in water [J]. Appl. Phys. Lett., 2003, 83(19): 3861-3863.

[47] CHTEAUNEUF M, PAYEUR S, DUBOIS J, et al.. Microwave guiding in air by a cylindrical filament array waveguide [J]. Appl. Phys. Lett., 2008, 92(9): 091104.

[48] SHNEIDER M N, ZHELTIKOV A M, MILES R B. Long-lived laser-induced microwave plasma guides in the atmosphere: self-consistent plasma-dynamic analysis and numerical simulations [J]. J. Appl. Phys., 2010, 108(3): 033113.

[49] VALUEV V V, DORMIDONOV A E, KANDIDOV V P, et al.. Plasma channels formed by a set of filaments as a guiding system for microwave radiation [J]. J. Commun. Technol. El., 2010, 55(2): 208-214.

[50] KOSAREVA O G, NGUYEN T, PANOV N A, et al.. Array of femtosecond plasma channels in fused silica [J]. Opt. Commun., 2006, 267(2): 511-523.

[51] FIBICH G, EISENMANN S, ILAN B, et al.. Control of multiple filamentation in air [J]. Opt. Lett., 2004, 29(15): 1772-1774.

[52] LUO Q, HOSSEINI S A, LIU W, et al.. Effect of beam diameter on the propagation of intense femtosecond laser pulses [J]. Appl. Phys. B, 2004, 80(1): 35-38.

[53] KOSAREVA O G, PANOV N A, AKZBEK N, et al.. Controlling a bunch of multiple filaments by means of a beam diameter [J]. Appl. Phys. B, 2005, 82(1): 111-122.

[54] SUN X D, XU S Q, ZHAO J Y, et al.. Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air [J]. Opt. Express, 2012, 20(4): 4790-4795.

[55] GAARDE M B, COUAIRON A. Intensity spikes in laser filamentation: diagnostics and application [J]. Phys. Rev. Lett., 2009, 103(4): 043901.

[56] HAO Z Q, ZHANG J, XI T T, et al.. Optimization of multiple filamentation of femtosecond laser pulses in air using a pinhole [J]. Opt. Express, 2007, 15(24): 16102-16109.

[57] PFEIFER T, GALLMANN L, ABEL M J, et al.. Circular phase mask for control and stabilization of single optical filaments [J]. Opt. Lett., 2006, 31(15): 2326-2328.

[58] FU Y, XIONG H, XU H, et al.. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate [J]. Opt. Lett., 2009, 34(23): 3752-3754.

[59] MCLEOD H. The axicon: a new type of optical element [J]. J. Opt. Soc. Am., 1954, 44(8): 592-592.

[60] DURNIN J, MICELI JR J J, EBERLY J H. Diffraction-free beams [J]. Phys. Rev. Lett., 1987, 58(15): 1499-1501.

[61] SCOTT G, MCARDLE N. Efficient generation of nearly diffraction-free beams using an axicon [J]. Opt. Eng., 1992, 31(12): 2640-2643.

[62] AKTURK S, ZHOU B, FRANCO M, et al.. Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon [J]. Opt. Commun., 2009, 282(1): 129-134.

[63] POLYNKIN P, KOLESIK M, ROBERTS A, et al.. Generation of extended plasma channels in air using femtosecond Bessel beams [J]. Opt. Express, 2008, 16(20) : 15733-15740.

[64] SONG Z M, ZHANG Z G, NAKAJIMA T. Transverse-mode dependence of femtosecond filamentation [J]. Opt. Express, 2009, 17(15) : 12217-12229.

[65] MCHANIN G, COUAIRON A, FRANCO M, et al.. Organizing Multiple Femtosecond Filaments in Air [J]. Phys. Rev. Lett., 2004, 93(3): 035003.

[66] LIU J S, SCHROEDER H, CHIN S L, et al.. Ultrafast control of multiple filamentation by ultrafast laser pulses [J]. Appl. Phys. Lett., 2005, 87(16): 161105.

[67] SCHROEDER H, LIU J, CHIN S L. From random to controlled small-scale filamentation in water [J]. Opt. Express, 2004, 12(20): 4768-4774.

[68] PANOV N A, KOSAREVA O G , MURTAZIN I N. Ordered filaments of a femtosecond pulse in the volume of a transparent medium [J]. J. Opt. Technol., 2006, 73(11): 778-785.

[69] HAURI C P, GAUTIER J, TRISORIO A, et al.. Two-dimensional organization of a large number of stationary optical filaments by adaptive wave front control [J]. Appl. Phys. B, 2008, 90(3): 391-394.

[70] ROHWETTER P, QUEISSER M, STELMASZCZYK K, et al.. Laser multiple filamentation control in air using a smooth phase mask [J]. Phys. Rev. A, 2008, 77(1): 013812.

[71] LIU L, WANG C, CHENG Y, et al.. Fine control of multiple femtosecond filamentation using a combination of phase plates [J]. J. Phys. B: At. Mol. Opt. Phys., 2011, 44(21): 215404.

[72] FU Y, GAO H, CHU W, et al.. Control of filament branching in air by astigmatically focused femtosecond laser pulses [J]. Appl. Phys. B, 2011, 103(2): 435-439.

[73] DUBIETIS A, TAMOGAUSKAS G, FIBICH G, et al.. Multiple filamentation induced by input-beam ellipticity [J]. Opt. Lett., 2004, 29(10): 1126-1128.

[74] GROW T D, GAETA A L. Dependence of multiple filamentation on beam ellipticity [J]. Opt. Express, 2005, 13(12): 4594-4599.

[75] MAJUS D, JUKNA V, VALIULIS G, et al.. Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams [J]. Phys. Rev. A, 2009, 79(3): 033843.

[76] MAJUS D, JUKNA V, TAMOAUSKAS G, et al.. Three-dimensional mapping of multiple filament arrays [J]. Phys. Rev. A, 2010, 81(4): 043811.

[77] SUN X D, GAO H, ZENG B, et al.. Multiple filamentation generated by focusing femtosecond laser with axicon [J]. Opt. Lett., 2012, 37(5): 857-859.

[78] GAO H, SUN X D, ZENG B, et al.. Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol [J]. J. Opt., 2012, 14(6): 065203.

高慧, 赵佳宇, 刘伟伟. 超快激光成丝现象的多丝控制[J]. 光学 精密工程, 2013, 21(3): 598. GAO Hui, ZHAO Jia-yu, LIU Wei-wei. Control of multiple filamentation induced by ultrafast laser pulses[J]. Optics and Precision Engineering, 2013, 21(3): 598.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!