光学 精密工程, 2013, 21 (3): 598, 网络出版: 2013-04-08   

超快激光成丝现象的多丝控制

Control of multiple filamentation induced by ultrafast laser pulses
作者单位
南开大学 现代光学研究所 光学信息技术科学教育部重点实验室, 天津 300071
摘要
研究了强场超快激光脉冲在光学介质中传输引起的成丝现象。考虑无序的多丝降低了激光光束的光斑质量, 影响了光丝的能量分布, 限制了超快激光脉冲成丝在实际中的应用, 本文介绍了目前对高功率超快激光脉冲在介质中传输时产生的多丝进行控制的方法, 并对各种方法进行了分析和比较。研究表明, 目前对于多丝的控制主要采用振幅调制或相位调制等方法, 已实现了减弱或消除强度微扰与传输介质折射率扰动, 可避免多丝间相互联系及能量的竞争, 使多丝按照预想的空间图样排布, 达到多丝控制的目的。文章指出, 目前多丝控制存在的主要问题是还不能准确完成对多丝长度及间距位置的精确控制。
Abstract
The filamentation phenomena come from the propagation of intense ultrafast laser pulses in transparent optical media is explored. It shows that the irregular distribution of filaments will reduce the quality of laser beams, effect on its energy distribution and constitute a serious drawback in practical applications. Therefore, this paper studies how to control the multiple filaments come from higher power laser propagation in optical media and analyzes and compares these control methods. It points out that the amplitude modulation and phase modulation are the main methods to control the multiple filamentation currently, which can decrease or eliminate the intensity perturbance and refractive index perturbance of transmission media, and avoids the interrelation between the multiple filamentations and their energy competition so that the multiple filamentations can be arranged in a preconceived form. It summarized that the existing problems for multiple filamentation control are how to control the length and spacing of the filamentation precisely.
参考文献

[1] CHIN S L, BRODEUR A, PETIT S, et al.. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser) [J]. J. Nonlinear Optic. Phys. Mat., 1999, 8(1): 121-146.

[2] MLEJNEK M, WRIGHT E M , MOLONEY J V. Dynamic spatial replenishment of femtosecond pulses propagating in air [J]. Opt. Lett., 1998, 23(5): 382-384.

[3] LIU W, PETIT S, BECKER A, et al.. Intensity clamping of a femtosecond laser pulse in condensed matter [J]. Opt. Commun., 2002, 202(1-3): 189-197.

[4] CHIN S L. Femtosecond Laser Filamentation [M]. Berlin: Springer, 2010.

[5] CHIN S L, HOSSEINI S A, LIU W, et al.. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges [J]. Can. J. Phys., 2005, 83(9): 863-905.

[6] COUAIRON A, MYSYROWICZ A. Femtosecond filamentation in transparent media [J]. Phys. Rep., 2007, 441(2-4): 47-189.

[7] BERGL, SKUPIN S, NUTER R, et al.. Ultrashort filaments of light in weakly ionized, optically transparent media [J]. Rep. Prog. Phys., 2007, 70(10): 1633-1713.

[8] BJOT P, KASPARIAN J, HENIN S, et al.. Higher-order kerr terms allow ionization-free filamenatation in gases [J]. Phys. Rev. Lett., 2010, 104(10): 103903.

[9] BJOT P, HERTZ E, KASPARIAN J, et al.. Transition from plasma-driven to kerr-driven laser filamentation [J]. Phys. Rev. Lett., 2011, 106(24): 243902 (2011).

[10] WANG Z X, ZHANG C J, LIU J S, et al.. Femtosecond filamentation in argon and higher-order nonlinearities [J]. Opt. Lett., 2011, 36(12): 2336-2338.

[11] GAETA A L. Catastrophic collapse of ultrashort pulses[J]. Phys. Rev. Lett., 2000, 84(16): 3582-3585.

[12] AKZBEK N, SCALORA M, BOWDEN C M, et al.. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air [J]. Opt. Commun., 2001, 191(3-6): 353-362.

[13] AKZBEK N, IWASAKI A, BECKER A, et al.. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses [J]. Phys. Rev. Lett., 2002, 89(14): 143901.

[14] NIBBERING E T J, CURLEY P F, GRILLON G, et al.. Conical emission from self-guided femtosecond pulses in air [J]. Opt. Lett., 1996, 21(1): 62-64.

[15] KASPARIAN J, SAUERBREY R, MONDELAIN D, et al.. Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere [J]. Opt. Lett., 2000, 25(18): 1397-1399.

[16] BRODEUR A, CHIN S L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media [J]. J. Opt. Soc. Am. B, 1999, 16(4): 637-650.

[17] LIU J S, SCHROEDER H, CHIN S L, et al.. Space-frequency coupling, conical waves, and small-scale filamentation in water [J]. Phys. Rev. A, 2005, 72(5): 053817.

[18] LIU J S, SCHROEDER H, CHIN S L, et al.. Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation [J]. Opt. Express, 2005, 13(25): 10248-10259.

[19] WANG Z X, LIU J S, LI R X, et al.. Wavefront control to generate ultraviolet supercontinuum by filamentation of few-cycle laser pulses in argon [J]. Opt. Lett., 2010, 35(2): 163-165.

[20] WANG Z X, LIU J S, LI R X, et al.. Supercontinuum generation and pulse compression from gas filamentation of femtosecond laser pulses with different durations [J]. Opt. Express, 2009, 17(16): 13841-13850.

[21] KANDIDOV V P, KOSAREVA O G, GOLUBTSOV I S, et al.. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation) [J]. Appl. Phys. B, 2003, 77(2-3): 149-165.

[22] KASPARIAN J, SAUERBREY R, CHIN S L. The critical laser intensity of self-guided light filaments in air [J]. Appl. Phys. B, 2000, 71(6): 877-879.

[23] HAURI C P, KORNELIS W, HELBING F W, et al.. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation [J]. Appl. Phys. B, 2004, 79(6): 673-677.

[24] CHEN X, LENG Y, LIU J, et al.. Pulse self-compression in normally dispersive bulk media [J]. Opt. Commun., 2006, 259(1): 331-335.

[25] LIU J S, LI R X, XU Z Z. Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion [J]. Phys. Rev. A, 2006, 74(4): 043801.

[26] KASPARIAN J, RODRIGUEZ M, MJEAN G, et al.. White-light filaments for atmospheric analysis [J]. Science, 2003, 301(5629): 61-64.

[27] KASPARIAN J, WOLF J-P. Physics and applications of atmospheric nonlinear optics and filamentation [J]. Opt. Express, 2008, 16(1): 466-493.

[28] XU H L, CHIN S L. Femtosecond laser filamentation for atmospheric sensing [J]. Sensors, 2011, 11(1): 32-53.

[29] DAVIS K M, MIURA K, SUGIMOTO N, et al.. Writing waveguides in glass with a femtosecond laser [J]. Opt. Lett., 1996, 21(21): 1729-1731.

[30] SALIMINIA A, NGUYEN N T, NADEAU M-C, et al.. Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses [J]. J. Appl. Phys., 2003, 93(7): 3724-3728.

[31] TZORTZAKIS S, SUDRIE L, FRANCO M, et al.. Self-guided propagation of ultrashort IR laser pulses in fused silica [J]. Phys. Rev. Lett., 2001, 87(21): 213902.

[32] AKTURK S, COUAIRON A, FRANCO M, et al.. Spectrogram representation of pulse self compression by filamentation [J]. Opt. Express, 2008, 16(22): 17626-17636.

[33] COUAIRON A, BIEGERT J, HAURI C P, et al.. Self-compression of ultra-short laser pulses down to one optical cycle by filamentation [J]. J. Mod. Opt., 2008, 53(1-2): 75-85.

[34] KOSAREVA O G, MURTAZIN I N, PANOV N A, et al.. Pulse shortening due to filamentation in transparent medium [J]. Laser Phys. Lett., 2007, 4(2): 126-132.

[35] ROHWETTER P, KASPARIAN J, STELMASZCZYK K, et al.. Laser-induced water condensation in air [J]. Nature Photonics, 2010, 4(7): 451-456.

[36] JU J, LIU J, WANG C, et al.. Laser-filamentation-induced condensation and snow formation in a cloud chamber [J]. Opt. Lett., 2012, 37(7): 1214-1216.

[37] JU J J, LIU J S, WANG C, et al.. Effects of initial humidity and temperature on laser-filamentation-induced condensation and snow formation [J]. Appl. Phys. B, 2012: 1-6.

[38] CHIN S L, AKZBEK N, PROULX A, et al.. Transverse ring formation of a focused femtosecond laser pulse propagating in air [J]. Opt. Commun., 2001, 188(1-4): 181-186.

[39] LIU W, GRAVEL J F, THBERGE F, et al.. Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air [J]. Appl. Phys. B, 2005, 80(7): 857-860.

[40] KANDIDOV V P, KOSAREVA O G, KOLTUNA A A. Nonlinear-optical transformation of a high-power femtosecond laser pulse in air [J]. Quantum Electron., 2003, 33(1): 69-75.

[41] BESPALOV V I, TALANOV V I. Filamentary structure of light beams in nonlinear liquids [J]. JETP Lett., 1966, 3(12): 307-312.

[42] CHIN S L, TALEBPOUR A, YANG J, et al.. Filamentation of femtosecond laser pulses in turbulent air [J]. Appl. Phys. B, 2002, 74(1):67-76.

[43] CHIN S L, PETIT S, LIU W, et al.. Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air [J]. Opt. Commun., 2002, 210(3): 329-341.

[44] HOSSEINI S A, LUO Q, FERLAND B, et al.. Competition of multiple filaments during the propagation of intense femtosecond laser pulses [J]. Phys. Rev. A, 2004, 70(3): 033802.

[45] MLEJNEK M, KOLESIK M, MOLONEY J V, et al.. Optically turbulent femtosecond light guide in air [J]. Phys. Rev. Lett., 1999, 83(15): 2938-2941.

[46] COOK K, KAR A K, LAMB R A. White-light supercontinuum interference of self-focused filaments in water [J]. Appl. Phys. Lett., 2003, 83(19): 3861-3863.

[47] CHTEAUNEUF M, PAYEUR S, DUBOIS J, et al.. Microwave guiding in air by a cylindrical filament array waveguide [J]. Appl. Phys. Lett., 2008, 92(9): 091104.

[48] SHNEIDER M N, ZHELTIKOV A M, MILES R B. Long-lived laser-induced microwave plasma guides in the atmosphere: self-consistent plasma-dynamic analysis and numerical simulations [J]. J. Appl. Phys., 2010, 108(3): 033113.

[49] VALUEV V V, DORMIDONOV A E, KANDIDOV V P, et al.. Plasma channels formed by a set of filaments as a guiding system for microwave radiation [J]. J. Commun. Technol. El., 2010, 55(2): 208-214.

[50] KOSAREVA O G, NGUYEN T, PANOV N A, et al.. Array of femtosecond plasma channels in fused silica [J]. Opt. Commun., 2006, 267(2): 511-523.

[51] FIBICH G, EISENMANN S, ILAN B, et al.. Control of multiple filamentation in air [J]. Opt. Lett., 2004, 29(15): 1772-1774.

[52] LUO Q, HOSSEINI S A, LIU W, et al.. Effect of beam diameter on the propagation of intense femtosecond laser pulses [J]. Appl. Phys. B, 2004, 80(1): 35-38.

[53] KOSAREVA O G, PANOV N A, AKZBEK N, et al.. Controlling a bunch of multiple filaments by means of a beam diameter [J]. Appl. Phys. B, 2005, 82(1): 111-122.

[54] SUN X D, XU S Q, ZHAO J Y, et al.. Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air [J]. Opt. Express, 2012, 20(4): 4790-4795.

[55] GAARDE M B, COUAIRON A. Intensity spikes in laser filamentation: diagnostics and application [J]. Phys. Rev. Lett., 2009, 103(4): 043901.

[56] HAO Z Q, ZHANG J, XI T T, et al.. Optimization of multiple filamentation of femtosecond laser pulses in air using a pinhole [J]. Opt. Express, 2007, 15(24): 16102-16109.

[57] PFEIFER T, GALLMANN L, ABEL M J, et al.. Circular phase mask for control and stabilization of single optical filaments [J]. Opt. Lett., 2006, 31(15): 2326-2328.

[58] FU Y, XIONG H, XU H, et al.. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate [J]. Opt. Lett., 2009, 34(23): 3752-3754.

[59] MCLEOD H. The axicon: a new type of optical element [J]. J. Opt. Soc. Am., 1954, 44(8): 592-592.

[60] DURNIN J, MICELI JR J J, EBERLY J H. Diffraction-free beams [J]. Phys. Rev. Lett., 1987, 58(15): 1499-1501.

[61] SCOTT G, MCARDLE N. Efficient generation of nearly diffraction-free beams using an axicon [J]. Opt. Eng., 1992, 31(12): 2640-2643.

[62] AKTURK S, ZHOU B, FRANCO M, et al.. Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon [J]. Opt. Commun., 2009, 282(1): 129-134.

[63] POLYNKIN P, KOLESIK M, ROBERTS A, et al.. Generation of extended plasma channels in air using femtosecond Bessel beams [J]. Opt. Express, 2008, 16(20) : 15733-15740.

[64] SONG Z M, ZHANG Z G, NAKAJIMA T. Transverse-mode dependence of femtosecond filamentation [J]. Opt. Express, 2009, 17(15) : 12217-12229.

[65] MCHANIN G, COUAIRON A, FRANCO M, et al.. Organizing Multiple Femtosecond Filaments in Air [J]. Phys. Rev. Lett., 2004, 93(3): 035003.

[66] LIU J S, SCHROEDER H, CHIN S L, et al.. Ultrafast control of multiple filamentation by ultrafast laser pulses [J]. Appl. Phys. Lett., 2005, 87(16): 161105.

[67] SCHROEDER H, LIU J, CHIN S L. From random to controlled small-scale filamentation in water [J]. Opt. Express, 2004, 12(20): 4768-4774.

[68] PANOV N A, KOSAREVA O G , MURTAZIN I N. Ordered filaments of a femtosecond pulse in the volume of a transparent medium [J]. J. Opt. Technol., 2006, 73(11): 778-785.

[69] HAURI C P, GAUTIER J, TRISORIO A, et al.. Two-dimensional organization of a large number of stationary optical filaments by adaptive wave front control [J]. Appl. Phys. B, 2008, 90(3): 391-394.

[70] ROHWETTER P, QUEISSER M, STELMASZCZYK K, et al.. Laser multiple filamentation control in air using a smooth phase mask [J]. Phys. Rev. A, 2008, 77(1): 013812.

[71] LIU L, WANG C, CHENG Y, et al.. Fine control of multiple femtosecond filamentation using a combination of phase plates [J]. J. Phys. B: At. Mol. Opt. Phys., 2011, 44(21): 215404.

[72] FU Y, GAO H, CHU W, et al.. Control of filament branching in air by astigmatically focused femtosecond laser pulses [J]. Appl. Phys. B, 2011, 103(2): 435-439.

[73] DUBIETIS A, TAMOGAUSKAS G, FIBICH G, et al.. Multiple filamentation induced by input-beam ellipticity [J]. Opt. Lett., 2004, 29(10): 1126-1128.

[74] GROW T D, GAETA A L. Dependence of multiple filamentation on beam ellipticity [J]. Opt. Express, 2005, 13(12): 4594-4599.

[75] MAJUS D, JUKNA V, VALIULIS G, et al.. Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams [J]. Phys. Rev. A, 2009, 79(3): 033843.

[76] MAJUS D, JUKNA V, TAMOAUSKAS G, et al.. Three-dimensional mapping of multiple filament arrays [J]. Phys. Rev. A, 2010, 81(4): 043811.

[77] SUN X D, GAO H, ZENG B, et al.. Multiple filamentation generated by focusing femtosecond laser with axicon [J]. Opt. Lett., 2012, 37(5): 857-859.

[78] GAO H, SUN X D, ZENG B, et al.. Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol [J]. J. Opt., 2012, 14(6): 065203.

高慧, 赵佳宇, 刘伟伟. 超快激光成丝现象的多丝控制[J]. 光学 精密工程, 2013, 21(3): 598. GAO Hui, ZHAO Jia-yu, LIU Wei-wei. Control of multiple filamentation induced by ultrafast laser pulses[J]. Optics and Precision Engineering, 2013, 21(3): 598.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!