光学学报, 2010, 30 (4): 1122, 网络出版: 2010-04-20   

全氟取代的钛酞菁衍生物的非线性光学和光限幅性能研究

Studies on the Nonlinear Optical and Optical Limiting Properties of Perfluorinated Titanium (IV) Phthalocyanines
作者单位
1 华东理工大学 化学与分子工程学院教育部结构可控先进功能材料及其制备重点实验室,上海 200237
2 爱尔兰圣三一学院 物理系爱尔兰聚合材料研究中心,爱尔兰 都柏林
摘要
制备和研究了全氟取代的钛酞菁F16PcTiO及其轴向取代衍生物 F16PcTiO2PhCHO的线性和非线性光学(含光限幅)性能。与F16PcTiO相比,轴向取代的钛酞菁F16PcTiO2PhCHO的Q带最大峰 红移了7 nm。Z-扫描实验表明,无论在甲苯溶液中还是在氯仿溶液中,F16PcTiO都展现出比F16PcTiO2PhCHO更大的非线性吸收系数和低的饱和能量密度。F16PcTiO2PhCHO在氯仿溶液中的光限幅性能要明显优于其在甲苯溶液中的光限幅性能。与高度可溶的四叔丁基取代的钛酞菁(tBu4PcTiO和tBu4PcTiO2PhCHO)相比,十六氟取代的钛酞菁化合物具有较强的由酞菁环间范德华力驱动的分子间相互作用,这种相互作用导致材料在有机溶剂中的溶解度降低和非线性性能(含光限幅)性能下降。
Abstract
The nonlinear optical and optical limiting properties of the perfluorinated phthalocyaninatotitanium (IV) oxide (F16PcTiO) and its derivative F16PcTiO2PhCHO have been studied. Compared to F16PcTiO,the peak maxima of the Q-band of F16PcTiO2PhCHO is shifted to the red by Δλ=7 nm. Z-scan experimental results show that F16PcTiO exhibited much greater nonlinear absorption coefficient and lower saturable fluence for optical limiting when compared to F16PcTiO2PhCHO in solution. The latter displays much better optical limiting performance in chloroform than in toluene. In contrast to the highly soluble tetra (tert-butyl)-substituted titanium (IV) phthalocyanines,i.e.,tBu4PcTiO and tBu4PcTiO2PhCHO,the perfluorinated titanium (IV) phthalocyanines display stronger intermolecular interactions which are driven by enhanced Van der Waal′s attractive forces between phthalocyanine rings,and reducs the effective nonlinear absorption and the solubility in common organic solvents as well.
参考文献

[1] For more information,please visit USAF Institute for National Security Studies (INSS) home page at www. usafa.af.mil/inss

[2] Abc News reported on Dec. 30,2004. See http://abcnews.go.com

[3] . W. Spangler. Recent development in the design of organic materials for optical power limiting[J]. J. Mater. Chem., 1999, 9: 2013-2020.

[4] 胥杰,赵尚弘,王怀军 等. 高功率光纤激光器用于战术激光武器[J]. 激光技术,2007,28(5):6-7

    Xu Jie,Zhao Shanghong,Wang Huaijun et al.. High power optical fiber laser for tactical laser weapon[J]. Laser Journal,2007,28(5):6-7

[5] 汪平河,廖伭,饶云红 等. 一种新型自激发布里渊掺铒光纤激光器[J]. 光学学报,2007,27(12):2200-2204

    Wang Pinghe,Liao Xian,Rao Yunjiang et al.. A novel self-exciting brillouin erbium-doped fiber laser[J]. Acta Optcia Sinica,2007,27(12):2200-2204

[6] 王清月,胡明列,宋有健 等. 用大模场光子晶体光纤获得高功率飞秒激光[J]. 中国激光,2007,34(12):1603-1606

    Wang Qingyue,Hu Minglie,Song Youjian et al.. Large-mode-area photonic crystal fiber laser durput high average power femtosecond pulses[J]. Chinese J. Lasers,2007,34(12):1603-1606

[7] 王元虎,曲彦臣,赵卫疆 等. 二维振镜调谐TEACO2激光器[J]. 中国激光,2008,35(3):359-362

    Wang Yuanhu,Qu Yanchen,Zhao Weijiang et al.. Tunable TEA.CO2 laser by a two-dimensional scanning system[J]. Chinese J. Lasers,2008,35(3):359-362

[8] . Chen,M. Hanack,Y. Araki et al.. Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting[J]. Chem. Soc. Rev., 2005, 34(6): 517-529.

[9] Y. Chen,M. E. EI-Khouly,J. J. Doyle et al.. Phthalocyanines and Related Compounds:Nonlinear Optical Response and Photoinduced Electron transfer Process[M]. Handbook of Organic Electronics and Photonics Stevenson Ranch,California,USA:American Scientific Publishers,2008,2:151-181

[10] . Chen,Y. Lin,Y. Liu et al.. Carbon nanotube-based functional materials for optical limiting[J]. J. Nanosci. Nanotechn., 2007, 7: 1268-1283.

[11] . Calvete,G. Y. Yang,M. Hanack. Porphyrins and phthalocyanines as materials for optical limiting[J]. Synth. Met., 2004, 141: 231-243.

[12] . J. Doyle,B. Ballesteros,G. Torre et al.. Combination of phthalocyanine and fullerene moieties for optical limiting[J]. Chem. Phys. Lett., 2006, 428: 307-311.

[13] . J. Zhou,W. Y. Wong,C. Ye et al.. Optical power limiters based on colorless di-,oligo-,and polymetallaynes:highly transparent materials for eye protection devices[J]. Adv. Funct. Mater., 2007, 17: 963-975.

[14] M. Barthel,D. Dini,S. Vagin et al.. An easy route for the synthesis of new axially substituted titanium(IV) phthalocyanines[J]. Eur. J. Org. Chem.,2002,3756-3762

[15] . Chen,M. E. EI-Khouly,M. Sasaki et al.. Synthesis of the axially substituted titanium Pc-C60 dyad with a convenient method[J]. Org. Lett., 2005, 7: 1613-1616.

[16] Y. Hung,T. R. Klose,T. M. Regan et al.. U.S. Patent:4701396,1987. 9-11

[17] . Handa,A. Suzuki,S. Shoji et al.. Spectral and electrochemical properties of vanadyl hexadecafluorophthalocyanine[J]. Inorg. Chim. Acta, 1995, 230: 41-44.

[18] . Schlettwein,H. Tada,S. Mashiko. Substrate-induced order and multilayer epitaxial growth of substituted phthalocyanine thin films[J]. Langmuir, 2000, 16: 2872-2881.

[19] . Y. Yang,M. Hanack,Y. W. Lee et al.. Synthesis and nonlinear optical properties of fluorine-containing naphthalocyanines[J]. Chem. Eur. J, 2003, 9: 2758-2762.

[20] . Sheik-Bahae,A. A. Said,T. H. Wie et al.. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE J. Quant. Electron., 1990, 26: 760-769.

[21] Y. Chen,D. Dini,M. Hanack et al.. Excited state properties of monomeric and dimeric axially bridged indium phthalocyanines upon UV-Vis laser irradiation [J]. Chem. Commun.,2004,340-341

[22] . Chen,L. R. Subramanian,M. Fujitsuka et al.. Synthesis and optical limiting properties of axially bridged phthalocyanines:[tBu4PcGa]2O and [tBu4PcIn]2O[J]. Chem. Eur. J, 2002, 8(18): 4248-4254.

[23] H. Heckmann. New Dyes for Optical Limiting:Indium Phthalocyanines and Naphthalocyanines[M]. PhD Thesis,Uni. Tuebingen,1999

[24] . Chen,M. Barthel,M. Seiler et al.. An axially bridged indium phthalocyanine dimer with an in-in bond[J]. Angew. Chem. Int. Ed. Engl., 2002, 41: 3239-3242.

[25] M. Hanack,T. Schneider,M. Batrthel et al.. Indium phthalocyanines and naphthalocyanines for optical limiting [J]. Coord. Chem. Rev.,2001,219-221:235-258

[26] . Dini,M. J. F. Calvete,M. Hanack. Nonlinear transmission of a tetrabrominated naphthalo-cyaninato indium chloride[J]. J. Phys. Chem. B, 2006, 110: 12230-12239.

[27] . F. Sun,G. Wang,Y. J. Li. Axial halogen ligand effect on photophysics and optical power limiting of some indium naphthalocyanines[J]. J. Phy. Chem. A, 2007, 111: 3263-3270.

[28] . J. Doyle,J. Wang,S. M. O′Flaherty et al.. Nonlinear optical performance of chemically tailored phthalocyanine-polymer films as solid-state optical limiting devices[J]. J. Opt. A:Pure Appl. Opt., 2008, 10: 075101-075109.

[29] . Chen,N. He,J. J. Doyle et al.. Enhancement of optical limiting response by embedding gallium phthalocyanine into polymer host[J]. J. Photochem. Photobio. A:Chem., 2007, 189: 414-417.

[30] . Chen,J. J. Doyle,Y. Liu et al.. Optoelectronic and nonlinear optical properties of tBu4PcTiO/polymer composite materials[J]. J. Photochem. Photobio. A:Chem., 2007, 185: 263-270.

高丽丽, 陈彧, 何楠, 刘莹, Wang Jun, Blau W.J.. 全氟取代的钛酞菁衍生物的非线性光学和光限幅性能研究[J]. 光学学报, 2010, 30(4): 1122. Gao Lili, Chen Yu, He Nan, Liu Ying, Wang Jun, Blau W. J.. Studies on the Nonlinear Optical and Optical Limiting Properties of Perfluorinated Titanium (IV) Phthalocyanines[J]. Acta Optica Sinica, 2010, 30(4): 1122.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!