激光技术, 2018, 42 (2): 259, 网络出版: 2018-03-21  

高冲程薄片激光器抽运结构的设计

Design of multipass pump schemes for thin disk lasers
作者单位
西南技术物理研究所,成都 610041
摘要
为了实现薄片激光器高吸收转换效率的目的,采用多次抽运吸收的方式,结合光斑离轴非对称反射抛物面和光斑对称分布非球面的抽运结构,提出了一种可以提高非球面光束分布占空比的高冲程抽运的新方法。设计了多种不同抽运冲程的结构,使用ZEMAX模拟验证了24冲程抽运时的光路分布和光斑位置图,通过比尔吸收定律理论计算了不同抽运冲程下薄片晶体对抽运光的吸收效率。结果表明,所设计的24冲程、36冲程、40冲程和80冲程的抽运结构,其中36冲程的吸收效率的性价比最高。该研究对高功率、高冲程、小体积的抽运结构设计具有指导作用。
Abstract
In order to achieve high absorption and conversion efficiency of thin disk lasers, the method of multiple pumping absorptions was adopted. Combining with the pumping structure of light spot asymmetric parabolic surface and light spot symmetrical aspheric surface, a new method of high pumping passing was proposed to improve the duty ratio of aspheric beam distribution. The multipass pumping structure was designed. The optical path distribution and spot position diagram of 24 passes pumping schemes were simulated by using ZEMAX. Absorption efficiency of thin disk crystal on pump light with different pumping passes was calculated theoretically according to Bill’s absorption law. The results show that among the designed pump structures of 24 passes, 36 passes, 40 passes and 80 passes schemes, the absorption efficiency of 36 passes pumping scheme is the most cost-effective. The research has guiding function for the design of small multi-pass pumping structures with high power.
参考文献

[1] SUMIDA D S, FAN T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media [J]. Optics Letters, 1994, 19(1): 1343-1345.

[2] BRAUCH U, GIESEN A, BRAUCH U, et al. Multi-watt diode-pumped Yb∶YAG thin disk laser continuously tunable between 1018 and 1053nm[J]. Optics Letters, 1995, 20(7): 713-715.

[3] KIM H S, YANG J M. Dependence of the temperature of a Yb∶YAG disk laser crystalon the pump laser’s spot size and the disk’s thickness[J]. Applied Optics, 2009, 55(4): 1425-1429.

[4] JOHNSON L F, GEUSIC J E, van UITERT L G, et al. Coherent oscillators from Tm3+Ho3+Yb3+ and Er3+ ions in YAG[J]. Applied Physics Letters, 1965, 7(5): 127-130.

[5] REINBERG A R, RISENBERG L A, BROWN R M, et al. GaAs∶Si LED pumped Yb doped YAG laser[J]. Applied Physics Letters, 1971, 19(1): 11-13.

[6] LIU Q, GONG M L, LU F, et al. Efficient corner pumped Yb∶YAG/YAG composite[J]. Applied Optics, 2006, 45(16): 3806-3810(in Chinese).

[7] GIESEN A, HUGEL H, GEUSIC J E, et al. Progress towards high-power high-brightness neodymium-based thin-disk lasers [J]. The International Society for Optical engineering, 2004, 28(1): 305-344.

[8] SCHUHMANN W, HNSCH K, KIRCH T, et al. Thin-disk laser pump schemes for large number of passes and moderate pump source quality [J]. Applied Optics, 2015, 32(54): 1559-1568.

[9] SONG X. Design and experiment research of resonators for high-power disk laser [D]. Wuhan: Huazhong University of Science and Technology, 2012: 30-42(in Chinese).

[10] DUAN X B. Analysis of the thermal lens effect on Yb∶YAG thin disk laser crystal [D].Wuhan: Huazhong University of Science and Technology, 2011: 20-34(in Chinese).

[11] WANG C H. Design and experiment of multi-pass pump system for Yb∶YAG thin disk laser[J] .High Power and Particle Beams, 2010, 37(11): 2795-2798(in Chinese).

[12] ZHOU X. Continuous-wave and pulse output performances for Yb∶YAG thin disk laser [D]. Harbin: Harbin Institute of Technology, 2012: 38-40(in Chinese).

[13] JAVADI-DASHCASAN M, HAJIESMAEILBAIGI F, RAZZAGHIET H, et al. Optimizing the Yb∶YAG thin disk laser design parameters [J]. Optics Communications, 2008, 281(18):4753-4757.

[14] VOSS A,WEICHELT B,AHMED M A, et al. Enhanced performance of the thin-disk lasers by pumping into the zero-phonon line [J]. Optics Letters, 2012, 47(15): 254-259.

[15] GIESEN A, HUGEL H, GEUSIC J E, et al. Progress towards high-power high-brightness neodymium-based thin-disk lasers [J]. The International Society for Optical Engineering, 2004, 28(1): 305-344.

[16] MA Y, WANG Ch H, WANG W M, et al. 16-pass pumped micro-channel cooled Yb∶YAG thin disk lasers[J]. Laser Technology, 2011, 35(1): 82-85(in Chinese).

[17] WANG X D. Research on diode pumped thin disk laser [D]. Changchun: Changchun University of Science and Technology, 2016: 7-21(in Chinese).

王晓丹, 田立君, 涂胜, 王志海, 李慧剑, 李彬, 贺也洹, 叶大华. 高冲程薄片激光器抽运结构的设计[J]. 激光技术, 2018, 42(2): 259. WANG Xiaodan, TIAN Lijun, TU Sheng, WANG Zhihai, LI Huijian, LI Bin, HE Yehuan, YE Dahua. Design of multipass pump schemes for thin disk lasers[J]. Laser Technology, 2018, 42(2): 259.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!