液晶与显示, 2020, 35 (7): 741, 网络出版: 2020-10-27   

液晶偏振变焦透镜组合设计

Design of liquid crystal polarization zoom lens
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
具有可变焦能力的透镜在成像、传感和检测等领域扮演着重要角色。本文通过研究液晶偏振透镜的光学特性, 设计出多点变焦的液晶偏振透镜变焦系统。液晶偏振透镜是一种利用液晶分子指向矢(光学各向异性轴)特定的空间排列, 产生特定几何相位差从而达到波前控制效果的光学器件, 对于左/右旋圆偏振光分别表现为正/负透镜效果。利用液晶偏振透镜的偏振特性及液晶分子受电场调制的性质, 本文设计出由一片普通正透镜、一片可调谐液晶波片和两片液晶偏振透镜组成的液晶偏振变焦透镜组合, 在特定的偏振入射光下, 可以实现7个焦距的改变。同时, 通过优化透镜焦距、间隔等参数, 可以使变焦透镜组合实现等间隔变焦等功能。实验结果显示, 在633 nm圆偏振光下, 利用自主制备的液晶偏振透镜组成的液晶偏振变焦透镜组合系统成功实现了7个焦距的变焦功能, 同时变焦距离基本符合预期且部分焦距(前6个)实现了等间隔分布, 充分验证了利用液晶偏振透镜实现多点变焦的可行性。
Abstract
Lens with tunable focal length play an important roles in imaging, sensing and detection. In this paper, by studying the polarization characteristics of liquid crystal polarization lenses (LCPL), a zoom system that realizes multi-point zoom through a combination of multiple LCPL is designed. LCPL is an optical element that utilizes a specific spatial arrangement of liquid crystal molecular directors (Optical anisotropy axes) to produce a specific geometric phase difference to control wavefront. For left/right circularly polarized light, LCPL is equivalent to a positive/negative lens. By using the polarization characteristics of LCPL and the electro-optic characteristics of liquid crystal, a liquid crystal polarization zoom lens system consisting of a common positive lens, a liquid crystal wave plate and two LCPLs is designed. The system can achieve zooming of 7 focal lengths under circularly polarized incident light. At the same time, by optimizing the parameters of the LCPLs (such as focal length, spacing, etc.), the system can achieve effects such as equal interval zoom. The experimental results show that under the 633 nm circularly polarized light, the liquid crystal polarization zoom lens combining system (composed of a self-made LCPL) successfully realizes zooming of 7 focal lengths, and the zooming distance meets the expected requirements essentially. This experiment fully verified the feasibility of multi-point zoom in LCPLs system.
参考文献

[1] 黄子强.液晶显示原理[M].北京: 国防工业出版社, 2006.

    黄子强.液晶显示原理[M].北京: 国防工业出版社, 2006.

    HUANG Z Q.Principle of Liquid Crystal Display [M]. Beijing: National Defend Industry Press, 2006. (in Chinese)

    HUANG Z Q.Principle of Liquid Crystal Display [M]. Beijing: National Defend Industry Press, 2006. (in Chinese)

[2] LIN Y H, WANG Y J, RESHETNYAK V. Liquid crystal lenses with tunable focal length [J]. Liquid Crystals Reviews, 2017, 5(2): 111-143.

    LIN Y H, WANG Y J, RESHETNYAK V. Liquid crystal lenses with tunable focal length [J]. Liquid Crystals Reviews, 2017, 5(2): 111-143.

[3] 王骁乾, 沈冬, 郑致刚, 等.液晶光控取向技术进展[J].液晶与显示, 2015, 30(5): 737-751.

    王骁乾, 沈冬, 郑致刚, 等.液晶光控取向技术进展[J].液晶与显示, 2015, 30(5): 737-751.

    WANG X Q, SHEN D, ZHENG Z G,et al. Review on liquid crystal photoalignment technologies [J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(5): 737-751. (in Chinese)

    WANG X Q, SHEN D, ZHENG Z G,et al. Review on liquid crystal photoalignment technologies [J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(5): 737-751. (in Chinese)

[4] WANG X Q, TAM A M W, JIA S Z, et al. Low-voltage-driven smart glass based on micro-patterned liquid crystal Fresnel lenses [J]. Applied Optics, 2019, 58(4): 1146-1151.

    WANG X Q, TAM A M W, JIA S Z, et al. Low-voltage-driven smart glass based on micro-patterned liquid crystal Fresnel lenses [J]. Applied Optics, 2019, 58(4): 1146-1151.

[5] SRIVASTAVA A K, WANG X Q, GONG S Q, et al. Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens [J]. Optics Letters, 2015, 40(8): 1643-1646.

    SRIVASTAVA A K, WANG X Q, GONG S Q, et al. Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens [J]. Optics Letters, 2015, 40(8): 1643-1646.

[6] WANG X Q, YANG W Q, LIU Z, et al. Switchable Fresnel lens based on hybrid photo-aligned dual frequency nematic liquid crystal [J]. Optical Materials Express, 2017, 7(1): 8-15.

    WANG X Q, YANG W Q, LIU Z, et al. Switchable Fresnel lens based on hybrid photo-aligned dual frequency nematic liquid crystal [J]. Optical Materials Express, 2017, 7(1): 8-15.

[7] TABIRYAN N V, SERAK S V, ROBERTS D E, et al. Thin waveplate lenses of switchable focal length-new generation in optics [J]. Optics Express, 2015, 23(20): 25783-25794.

    TABIRYAN N V, SERAK S V, ROBERTS D E, et al. Thin waveplate lenses of switchable focal length-new generation in optics [J]. Optics Express, 2015, 23(20): 25783-25794.

[8] PANCHARATNAM S. Generalized theory of interference, and its applications: Part I. Coherent pencils [J]. Proceedings of the Indian Academy of Sciences-Section A, 1956, 44(5): 247-262.

    PANCHARATNAM S. Generalized theory of interference, and its applications: Part I. Coherent pencils [J]. Proceedings of the Indian Academy of Sciences-Section A, 1956, 44(5): 247-262.

[9] BERRY M V. The adiabatic phase and Pancharatnam’s phase for polarized light [J]. Journal of Modern Optics, 1987, 34(11): 1401-1407.

    BERRY M V. The adiabatic phase and Pancharatnam’s phase for polarized light [J]. Journal of Modern Optics, 1987, 34(11): 1401-1407.

[10] GUTIRREZ-VEGA J C. Pancharatnam-Berry phase of optical systems [J]. Optics Letters, 2011, 36(7): 1143-1145.

    GUTIRREZ-VEGA J C. Pancharatnam-Berry phase of optical systems [J]. Optics Letters, 2011, 36(7): 1143-1145.

[11] BOMZON Z, BIENER G, KLEINER V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings [J]. Optics Letters, 2002, 27(13): 1141-1143.

    BOMZON Z, BIENER G, KLEINER V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings [J]. Optics Letters, 2002, 27(13): 1141-1143.

[12] TABIRYAN N, ROBERTS D, SERABYN E, et al. Superlens in the skies: liquid-crystal-polymer technology for telescopes [EB/OL]. (2016-02-05) [2019-07-05]. https: //spie.org/news/6317-superlens-in-the-skies-liquid-crystal-polymer-technology-for-telescopes.

    TABIRYAN N, ROBERTS D, SERABYN E, et al. Superlens in the skies: liquid-crystal-polymer technology for telescopes [EB/OL]. (2016-02-05) [2019-07-05]. https: //spie.org/news/6317-superlens-in-the-skies-liquid-crystal-polymer-technology-for-telescopes.

[13] LEE Y H, TAN G J, ZHAN T, et al. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities [J]. Optical Data Processing and Storage, 2017, 3(1): 79-88.

    LEE Y H, TAN G J, ZHAN T, et al. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities [J]. Optical Data Processing and Storage, 2017, 3(1): 79-88.

[14] JAMALI A, BRYANT D, ZHANG Y L, et al. Design investigation of tunable liquid crystal lens for virtual reality displays [J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 1057-1060.

    JAMALI A, BRYANT D, ZHANG Y L, et al. Design investigation of tunable liquid crystal lens for virtual reality displays [J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 1057-1060.

[15] LU L, PENG F L, WANG M F, et al. Liquid crystal technology for solving key optical challenges in virtual and augmented realities [J]. SID Symposium Digest of Technical Papers, 2019, 50(1): 826-829.

    LU L, PENG F L, WANG M F, et al. Liquid crystal technology for solving key optical challenges in virtual and augmented realities [J]. SID Symposium Digest of Technical Papers, 2019, 50(1): 826-829.

[16] 沈常宇, 金尚忠.光学原理[M].北京: 清华大学出版社, 2013.

    沈常宇, 金尚忠.光学原理[M].北京: 清华大学出版社, 2013.

    SHEN C Y, JIN S Z.Principles of Optics [M]. Beijing: Tsinghua University Press, 2013. (in Chinese)

    SHEN C Y, JIN S Z.Principles of Optics [M]. Beijing: Tsinghua University Press, 2013. (in Chinese)

[17] GAO K, MCGINTY C, PAYSON H, et al. High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design [J]. Optics Express, 2017, 25(6): 6283-6293.

    GAO K, MCGINTY C, PAYSON H, et al. High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design [J]. Optics Express, 2017, 25(6): 6283-6293.

[18] CINCOTTI G. Design of geometric phase holograms with arbitrary polarization states and waveforms [C]//Proceedings of the 2017 19th International Conference on Transparent Optical Networks. Girona, Spain: IEEE, 2017.

    CINCOTTI G. Design of geometric phase holograms with arbitrary polarization states and waveforms [C]//Proceedings of the 2017 19th International Conference on Transparent Optical Networks. Girona, Spain: IEEE, 2017.

[19] KIM J. Liquid crystal geometric phase holograms for efficient beam steering and imaging spectropolarimetry [D]. Raleigh, North Carolina: North Carolina State University, 2011.

    KIM J. Liquid crystal geometric phase holograms for efficient beam steering and imaging spectropolarimetry [D]. Raleigh, North Carolina: North Carolina State University, 2011.

[20] NIKOLOVA L, TODOROV T. Diffraction efficiency and selectivity of polarization holographic recording [J]. Optica Acta: International Journal of Optics, 1984, 31(5): 579-588.

    NIKOLOVA L, TODOROV T. Diffraction efficiency and selectivity of polarization holographic recording [J]. Optica Acta: International Journal of Optics, 1984, 31(5): 579-588.

[21] TERVO J, TURUNEN J. Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings [J].Optics Letters, 2000, 25(11): 785-786.

    TERVO J, TURUNEN J. Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings [J].Optics Letters, 2000, 25(11): 785-786.

[22] 石顺祥, 张海兴, 刘劲松.物理光学与应用光学[M].西安: 西安电子科技大学出版社, 2000.

    石顺祥, 张海兴, 刘劲松.物理光学与应用光学[M].西安: 西安电子科技大学出版社, 2000.

    SHI S X, ZHANG H X, LIU J S.Physical Optics and Wave Optics [M]. Xi’an: Xidian University Press, 2000. (in Chinese)

    SHI S X, ZHANG H X, LIU J S.Physical Optics and Wave Optics [M]. Xi’an: Xidian University Press, 2000. (in Chinese)

魏如东, 穆全全, 王启东, 陈万, 赵志伟. 液晶偏振变焦透镜组合设计[J]. 液晶与显示, 2020, 35(7): 741. WEI Ru-dong, MU Quan-quan, WANG Qi-dong, CHEN Wan, ZHAO zhi-wei. Design of liquid crystal polarization zoom lens[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 741.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!