光学学报, 2020, 40 (6): 0601001, 网络出版: 2020-03-06   

海洋水色卫星紫外波段的偏振特性分析 下载: 1057次

Polarization Characteristics of Ultraviolet Bands Observed by Ocean Color Satellites
作者单位
1 中国科学院上海技术物理研究所, 上海 200083
2 中国科学院大学, 北京 100049
3 自然资源部第二海洋研究所卫星海洋环境动力学国家重点实验室, 浙江 杭州 310012
引用该论文

张艺蔚, 陶邦一, 毛志华, 黄海清, 朱乾坤, 龚芳. 海洋水色卫星紫外波段的偏振特性分析[J]. 光学学报, 2020, 40(6): 0601001.

Yiwei Zhang, Bangyi Tao, Zhihua Mao, Haiqing Huang, Qiankun Zhu, Fang Gong. Polarization Characteristics of Ultraviolet Bands Observed by Ocean Color Satellites[J]. Acta Optica Sinica, 2020, 40(6): 0601001.

参考文献

[1] Stamnes K, Slusser J, Bowen M. Derivation of total ozone abundance and cloud effects from spectral irradiance measurements[J]. Applied Optics, 1991, 30(30): 4418-4426.

[2] Antón M, Bortoli D, Costa M J, et al. Temporal and spatial variabilities of total ozone column over Portugal[J]. Remote Sensing of Environment, 2011, 115(3): 855-863.

[3] 闫欢欢, 陈良富, 陶金花, 等. 珠江三角洲地区SO2浓度卫星遥感长时间序列监测[J]. 遥感学报, 2012, 16(2): 390-404.

    Yan H H, Chen L F, Tao J H, et al. SO2 long-term monitoring by satellite in the Pearl River Delta[J]. Journal of Remote Sensing, 2012, 16(2): 390-404.

[4] Kollonige D E, Thompson A M, Josipovic M, et al. OMI satellite and ground-based Pandora observations and their application to surface NO2 estimations at terrestrial and marine sites[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 1441-1459.

[5] 方四安, 黄小仙, 尹达一, 等. 海洋溢油模拟目标的紫外反射特性研究[J]. 光谱学与光谱分析, 2010, 30(3): 738-742.

    Fang S A, Huang X X, Yin D Y, et al. Research on the ultraviolet reflectivity characteristic of simulative targets of oil spill on the ocean[J]. Spectroscopy and Spectral Analysis, 2010, 30(3): 738-742.

[6] 尹达一, 周青, 黄小仙, 等. 海面溢油紫外推扫相机航空遥感监测校飞结果分析[J]. 海洋科学进展, 2014, 32(2): 239-248.

    Yin D Y, Zhou Q, Huang X X, et al. Analysis of experimental results from airborne remote sensing monitoring of oceanic oil spill by using ultraviolet push-broom camera (UPC)[J]. Advances in Marine Science, 2014, 32(2): 239-248.

[7] He X Q, Bai Y, Pan D L, et al. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters[J]. Optics Express, 2012, 20(18): 20754-20770.

[8] International Ocean-Colour CoordinatingGroup. Why ocean colour? The societal benefits of ocean-colour technology[R]. Canada: IOCCG, 2008: 7.

[9] Wang M H. Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing[J]. Applied Optics, 2006, 45(35): 8951-8963.

[10] Chami M, Lafrance B, Fougnie B, et al. OSOAA: a vector radiative transfer model of coupled atmosphere-ocean system for a rough sea surface application to the estimates of the directional variations of the water leaving reflectance to better process multi-angular satellite sensors data over the ocean[J]. Optics Express, 2015, 23(21): 27829-27852.

[11] Bodhaine B A, Wood N B, Dutton E G, et al. On Rayleigh optical depth calculations[J]. Journal of Atmospheric and Oceanic Technology, 1999, 16(11): 1854-1861.

[12] Young A T. Revised depolarization corrections for atmospheric extinction[J]. Applied Optics, 1980, 19(20): 3427-3428.

[13] Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun's glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838-850.

[14] Smith R C, Baker K S. Optical properties of the clearest natural waters (200-800 nm)[J]. Applied Optics, 1981, 20(2): 177-184.

[15] Pope R M, Fry E S. Absorption spectrum (380-700 nm) of pure water II integrating cavity measurements[J]. Applied Optics, 1997, 36(33): 8710-8723.

[16] Kou L H, Labrie D, Chylek P. Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range[J]. Applied Optics, 1993, 32(19): 3531-3540.

[17] Morel A. Optical properties of pure water and pure sea water[J]. Optical Aspects of Oceanography, 1974, 1(1): 1-24.

[18] Bricaud A, Morel A, Babin M, et al. Variations of light absorption by suspended particles with chlorophylla concentration in oceanic (case 1) waters: analysis and implications for bio-optical models[J]. Journal of Geophysical Research: Oceans, 1998, 103(C13): 31033-31044.

[19] Morel A. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters)[J]. Journal of Geophysical Research Atmospheres, 1988, 93(C9): 10749-10768.

[20] Chami M. Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance[J]. Journal of Geophysical Research Atmospheres, 2007, 112(C5): C05026.

[21] 潘小乐. 相对湿度对气溶胶散射特性影响的观测研究[D]. 北京: 中国气象科学研究院, 2007: 5- 13.

    Pan XL. Observation study of atmospheric aerosol scattering characteristics as a function of relative humidity[D]. Beijing: Chinese Academy of Meteorological Sciences, 2007: 5- 13.

[22] 董骁, 胡以华, 徐世龙, 等. 不同气溶胶环境中相干激光雷达回波特性[J]. 光学学报, 2018, 38(1): 0101001.

    Dong X, Hu Y H, Xu S L, et al. Echoing characteristics of coherent lidar in different aerosol environments[J]. Acta Optica Sinica, 2018, 38(1): 0101001.

[23] 崔岩, 张西光, 周鑫昌, 等. 气溶胶对天空光偏振分布的影响[J]. 光学学报, 2019, 39(6): 0601001.

    Cui Y, Zhang X G, Zhou X C, et al. Effect of aerosol on polarization distribution of sky light[J]. Acta Optica Sinica, 2019, 39(6): 0601001.

[24] Gordon H R, Wang M H. Surface-roughness considerations for atmospheric correction of ocean color sensors 1: the Rayleigh-scattering component[J]. Applied Optics, 1992, 31(21): 4247-4260.

[25] Wang M H, Gordon H R. Calibration of ocean color scanners: how much error is acceptable in the near infrared?[J]. Remote Sensing of Environment, 2002, 82(2): 497-504.

张艺蔚, 陶邦一, 毛志华, 黄海清, 朱乾坤, 龚芳. 海洋水色卫星紫外波段的偏振特性分析[J]. 光学学报, 2020, 40(6): 0601001. Yiwei Zhang, Bangyi Tao, Zhihua Mao, Haiqing Huang, Qiankun Zhu, Fang Gong. Polarization Characteristics of Ultraviolet Bands Observed by Ocean Color Satellites[J]. Acta Optica Sinica, 2020, 40(6): 0601001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!