光电工程, 2017, 44 (10): 1014, 网络出版: 2017-11-27   

红外材料低温热膨胀系数测量方案及其精度分析

Measurement of cryogenic thermal expansion coefficient and accuracy analysis
作者单位
西南科技大学制造过程测试技术教育部重点实验室,四川 绵阳 621010
摘要
为了实现低温真空环境下红外材料热膨胀系数的高精度测量,提出了一种固体材料低温热膨胀系数的测量方案。本方案基于自准直原理,设计了一种测微结构,建立起了结构变形与角度的关系,并推导出热膨胀系数测量公式。利用测量公式,从理论上分析了该方案的测量误差传递函数关系,并利用误差灵敏度函数对红外材料低温热膨胀系数测量装置的设计精度进行了分析,最后通过计算得到了该方案的测量相对误差。结果表明,测量的热膨胀系数相对误差仅为0.76%,满足纳米级测量要求。
Abstract
In order to realize the high-precision measurement of the thermal expansion coefficient of the infrared material under the cryogenic vacuum environment, a measurement scheme of solid material is proposed. Based on the self-collimation principle, this scheme designs a microstructure, establishes the relationship between structural deformation and angle, and deduces the formula of thermal expansion coefficient measurement. Us-ing the measurement formula, this article analyzes the relationship between the measurement error transfer function of the scheme, and also uses the error sensitivity function to analyze the design accuracy of cryogenic thermal expansion coefficient measuring device for infrared materials, and finally the relative error of the scheme is calculated. The thermal expansion coefficient of the scheme is measured to be only 0.76%, which satisfies the nanometer measurement requirement.
参考文献

[1] 倪磊, 任栖锋, 廖胜. 红外材料低温折射率测量技术研究: 不确定度分析[J]. 光电工程, 2010, 37(10): 77-82.

    Ni Lei, Ren Qifeng, Liao Sheng. Measurement of cryogenic refractive index of ir materials: uncertainty analysis[J]. Opto-Electronic Engineering, 2010, 37(10): 77-82.

[2] Svensson S P, Sarney W L, Donetsky D, et al. Materials design parameters for infrared device applications based on III-V semiconductors[J]. Applied Optics, 2017, 56(3): B58–B63.

[3] Ordu M, Guo J, Pack G N, et al. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared[J]. AIP Advances, 2017, 7(9): 095125.

[4] Lin H, Chen H, Zheng Y J, et al. Two excellent phase-matchable infrared nonlinear optical materials based on 3D diamond-like frameworks: RbGaSn2Se6 and RbInSn2Se6[J]. Dalton Transactions, 2017, 46(24): 7714–7721.

[5] Tang J Y, Xiao Z Y, Xu K K. Broadband ultrathin absorber and sensing application based on hybrid materials in infrared region[J]. Plasmonics, 2017, 12(4): 1091–1098.

[6] Guo S P, Chi Y, Guo G C. Recent achievements on middle and far-infrared second-order nonlinear optical materials[J]. Coordination Chemistry Reviews, 2017, 355: 44–57.

[7] Bureau B, Boussard-Plédel C, Troles J, et al. Development of optical fibers for mid-infrared sensing: state of the art and recent achievements[J]. Proceedings of SPIE, 2015, 9507: 950702.

[8] Wang Y, Overvig A C, Shrestha S, et al. Tunability of indium tin oxide materials for mid-infrared plasmonics applications[J]. Optical Materials Express, 2017, 7(8): 2727–2739.

[9] Pizetta D C, Mastelaro V R. Building a dilatometer and determining the coefficient of linear thermal expansion[J]. Revista Brasileira De Ensino De Física, 2014, 36: 1313.

[10] Kumar V, Sastry B S R. Thermal expansion coefficient of binary semiconductors[J]. Crystal Research and Technology, 2015, 36(6): 565–569.

[11] Miyazaki H, Ushiroda I, Itomura D, et al. Thermal expansion of NaZr2 (Po4)3 family ceramics in a low-temperature range[J]. Japanese Journal of Applied Physics, 2008, 47(9): 7262–7265.

[12] 黄永华, 吴哲, 李晓慈, 等. 热膨胀系数简易测量装置研制及若干材料测量[J]. 化工学报, 2016, 67(S2): 38–45.

    Haung Yonghua, Wu Zhe, Li Xiaoci, et al. Development of simple thermal expansion coefficient measurement apparatus and its application to several materials[J]. CIESC Journal, 2016, 67(S2): 38–45.

[13] 吴清仁, 文璧璇. SiC材料导热系数和热膨胀系数与温度关系[J]. 华南理工大学学报(自然科学版), 1996, 24(3): 11–15.

    Wu Qingren, Wen Bixuan. Studies on temperature dependence of thermal conductivity and linear expansion for SiC material[J]. Journal of South China University of Technology (Natural Science), 1996, 24(3): 11–15.

[14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.金属材料热膨胀特征参数的测定: GB/T 4339-2008[S]. 北京: 中国标准出版社, 2009.

    People's Republic of China General Administration of Quality Supervision, Inspection and Quarantine, China National Standardization Administration Committee. Test methods for thermal expansion characteristic parameters of metallic materials: GB/T 4339-2008[S]. Beijing: China Standard Press, 2009.

倪磊, 黄宝瑞, 李培林. 红外材料低温热膨胀系数测量方案及其精度分析[J]. 光电工程, 2017, 44(10): 1014. Lei Ni, Baorui Huang, Peilin Li. Measurement of cryogenic thermal expansion coefficient and accuracy analysis[J]. Opto-Electronic Engineering, 2017, 44(10): 1014.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!