人工晶体学报, 2020, 49 (5): 753, 网络出版: 2020-08-06   

非氟卤化物闪烁晶体的研究现状和发展趋势

Research Status and Development Trend of Non-fluorinated Halide Scintillation Crystals
作者单位
北京玻璃研究院,北京 101111
引用该论文

张明荣. 非氟卤化物闪烁晶体的研究现状和发展趋势[J]. 人工晶体学报, 2020, 49(5): 753.

ZHANG Mingrong. Research Status and Development Trend of Non-fluorinated Halide Scintillation Crystals[J]. Journal of Synthetic Crystals, 2020, 49(5): 753.

参考文献

[1] Iltis Alain, Mayhugh M R, Menge P, et al. Lanthanum halide scintillators: Properties and applications[J].Nuclear Instruments and Methods in Physics Research A,2006,563: 359-363.

[2] Shiran N, Gektin A, Boyarintseva Y, et al. Modification of NaI crystal scintillation properties by Eu-doping[J].Optical Materials,2010,32: 1345-1348.

[3] Yang K, Menge P R. Improving γ-ray energy resolution, non-proportionality, and decay time of NaI∶Tl+ with Sr2+ and Ca2+ co-doping[J].Journal of Applied Physics,2015,118: 213106.

[4] Khodyuk I V, Messina S A, Hayden T J, et al. Optimization of scintillation performance via a combinatorial multi-element co-doping strategy: Application to NaI∶Tl[J].Journal of Applied Physics,2015,118: 084901.

[5] Brecher C, Lempicki A, Miller S R, et al. Suppression of afterglow in CsI∶Tl by codoping with Eu2+—I: Experimental[J].Nuclear Instruments and Methods in Physics Research A, 2006, 558: 450-457.

[6] Nagarkar V V, Brecher C, Ovechkina E E, et al. Scintillation properties of CsI∶Tl crystals codoped with Sm2+[J].IEEE Transactions on Nuclear Science,2008,55: 1270-1274.

[7] Wu Y T, Ren G H, Nikl M, et al. CsI∶Tl+,Yb2+: Ultra-high light yield scintillator with reduced afterglow[J].Cryst. Eng. Comm.,2014,16: 3312-3317.

[8] Hawrami R, Burger A, Aggarwal M D, et al. SrI2 a Novel scintilaator crystal for nuclear isotope identifiers [M].Proc. SPIE.,7079,2008: 70790-70791.

[9] Cherepy Nerine J, Payne Steve A, Asztalos Stephen J, et al. Scintillators with potential to supersede lanthanum bromide[J].IEEE Transactions on Nuclear Science,2009,56: 873-880.

[10] Iida Takashi, Kamada Kei, Yoshino Masao, et al. High-light-yield calcium iodide (CaI2) scintillator for astroparticle physics[J].Nuclear Instruments and Methods in Physics Research A,2020,958: 162629-162631.

[11] Alekhin Mikhail S, Biner Daniel A, Kraemer Karl W, et al. Optical and scintillation properties of SrI2: Yb2+[J]. Optical Materials,2014,37: 382-386.

[12] Yan Zewu, Gundiah Gautam, Bizarri Gregory A, et al. Eu2+-activated BaCl2, BaBr2 and BaI2 scintillators revisited[J].Nuclear Instruments and Methods in Physics Research A,2014,735: 83-87.

[13] Gundiah G, Bizarri G, Hanrahan S M, et al. Structure and scintillation of Eu2+-activated solid solutions in the BaBr2-BaI2 system[J]. Nuclear Instruments & Methods in Physics Research A,2011,652: 234-237.

[14] Shalaev A A, Shendrik R, Myasnikova A S, et al. Luminescence of BaBrI and SrBrI single crystals doped with Eu2+[J].Optical Materials,2018,79: 84-89.

[15] Loef E V van, Wilson C M, Cherepy N J, et al. Crystal growth and scintillation properties of strontium iodide scintillators[J].IEEE Transactions on Nuclear Science,2009,56: 869-872.

[16] Wu Yuntao, Li Qi, Rutstrom Daniel J, et al. Effects of zirconium codoping on the optical and scintillation properties of SrI2∶Eu single crystals[J].Nuclear Instruments and Methods in Physics Research A,2020,954: 161242.

[17] Alekhin Mikhail S, Haas Johan T M, Kramer Karl W, et al. Scintillation properties of and self absorption in SrI2∶Eu2+[J].IEEE Transactions on Nuclear Science,2011,58: 2519-2527.

[18] Nishimoto Kei, Yokota Yuui, Kurosawa Shunsuke, et al. Eu concentration dependence on scintillation properties of Eu doped SrI2 single crystals grown by modified micro-pulling-down method[J].Optical Materials,2014,36: 1946-1949.

[19] Swider S, Lam S, Motakef S, et al. Impurity segregation in zone-refined prec ursors for crystalline halide scintillators[J].Nuclear Instruments and Methods in Physics Research A,2015,784: 5-8.

[20] Kawai Taketoshi, Sakuragi Shiro, Hashimoto Satoshi. Luminescence properties of pure and Eu-doped SrI2 crystals purified by a “Liquinert” process and grown by vertical Bridgman method[J].Journal of Luminescence,2016,176: 58-64.

[21] Boatner L A, Ramey J O, Kolopus J A, et al. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth[J].Nuclear Instruments and Methods in Physics Research A,2015,786: 23-31.

[22] Shah K S, Glodo J, Klugerman M, Higgins W, et al. LuI3∶Ce - A new scintillator for gamma ray spectroscopy[J].IEEE Transactions on Nuclear Science,2004,51: 2302-2305.

[23] Birowosuto M D, Dorenbos P, Bizarri G, et al. Temperature dependent scintillation and luminescence characteristics of GdI3∶Ce3+[J].IEEE Transactions on Nuclear Science,2008,55: 1164-1169.

[24] Glodo J, Loef E V D van, Higgins W M, et al. Mixed lutetium iodide compounds[J].IEEE Trans. Nucl. Sci.,2008,NS-55: 1496-1500.

[25] Loef E V D van,Dorenbos P,Eijk C W E van,et al. Scintillation properties of LaBr3∶Ce3+ crystals: fast, efficient and high-energy-resolution scintillators[J].Nuclear Instruments and Methods in Physics Research A,2002,486: 254-25.

[26] Menge Peter R, Gautier G, Iltis A, et al. Performance of large lanthanum bromide scintillators[J].Nuclear Instruments and Methods in Physics Research A,2007,579: 6-10.

[27] Wolszczak W, Dorenbos P. Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators[J].Nuclear Instruments and Methods in Physics Research A,2017,857: 66-74.

[28] Alekhin M S, de Haas J T M, Khodyuk I V, et al. Improvement of gamma-ray energy resolution of LaBr3∶Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping[J].Applied Physics Letters,2013,102: 161915.

[29] Benedetto A, Valladeau S, Richaud D, et al. The effect of LaBr3∶Ce single crystal aliovalent co-doping on its mechanical strength[J].Nuclear Instruments and Methods in Physics Research A,2015,784: 17-22.

[30] Yang K, Zhuravleva M, Melcher C L. Crystal growth and characterization of CsSr1-xEuxI3 high light yield scintillators[J].Physica Status Solidi-Rapid Research Letters,2011,5: 43-45.

[31] Zhuravleva M, Blalock B, Yang K, et al. New single crystal scintillators: CsCaCl3∶Eu and CsCaI3∶Eu[J].Journal of Crystal growth,2012,352: 115-119.

[32] Lindsey Adam C, Zhuravleva Mariya, Stand Luis, et al. Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator[J].Optical Materials,2015,48: 1-6.

[33] Cherginets V L, Rebrova N V, Grippa A Yu, et al. Scintillation properties of CsSrX3∶Eu2+ (CsSr1-yEuyX3, X=Cl, Br; 0≤y≤0.05) single crystals grown by the Bridgman method[J].Materials Chemistry and Physics,2014,143: 1296-1299.

[34] Stand L, Zhuravleva M, Chakoumakos B, et al. Characterization of mixed halide scintillators: CsSrBrI2∶Eu, CsCaBrI2∶Eu and CsSrClBr2∶Eu[J].Journal of Luminescence,2019,207: 70-77.

[35] Wu Y T, Zhuravleva Mariya, Lindsey Adam C, et al. Eu2+ concentration effects in KCa0.8Sr0.2I3∶Eu2+: A novel high-performance scintillator[J].Nuclear Instruments and Methods in Physics Research A,2016,820: 132-140.

[36] Wei H, Zhuravleva M, Yang K, et al. Effect of Ba substitution in CsSrI3∶Eu2+[J].Journal of Crystal Growth,2013,384: 27-32.

[37] Rebrova N V, Grippa A Yu, Pushak A S, et al. Crystal growth and characterization of Eu2+ doped RbCaX3 (X=Cl, Br) scintillators[J].Journal Crystal Growth,2017,466: 39-44.

[38] Shwetha G, Kanchana V, Vaitheeswaran G. CsMgCl3: A promising cross luminescence material[J].Journal of Solid State Chemistry,2015,227: 110-116.

[39] Kobayashi M, Omata K, Sugimoto S, et al. Scintillation characteristics of CsPbCl3 single crystals[J].Nuclear Instruments and Methods in Physics Research A,2008, 592: 369-373.

[40] Fujimoto Yutaka, Saeki Keiichiro, Yanagida Takayuki, et al. Luminescence and scintillation properties of TlCdCl3 crystal[J].Radiation Measurements,2017,106: 151-154.

[41] Hawrami R, Ariesanti E, Wei H, et al. Intrinsic scintillators: TlMgCl3 and TlCaI3[J].Journal of Crystal Growth,2017,475: 216-219.

[42] Khan Arshad, Rooh Gul, Kim H J, et al. Intrinsically activated TlCaCl3: A new halide scintillator for radiation detection[J].Radiation Measurements,2017,107: 115-118.

[43] Loyd Matthew, Lindsey Adam, Wu Y T, et al. Growth of large size (≥38 mm diameter) KCaI3∶Eu scintillator crystals[J].Nuclear Instruments and Methods in Physics Research A,2019,914: 8-14.

[44] Bourret-Courchesne E D, Bizarri G, Borade R, et al. Crystal growth and characterization of alkali-earth halide scintillators[J].Journal of Crystal Growth,2012,352: 78-83.

[45] Yahaba Natsuna, Koshimizu Masanori, Sun Yan, et al. X-ray detection capability of a Cs2ZnCl4 single-crystal scintillator[J].Applied Physics Express,2014,7: 062602.

[46] Takahashi Kentaro, Kimura Hiromi, Nakauchi Daisuke, et al. Photoluminescence and scintillation properties of undoped and Tl-doped Cs2BaBr4 crystals[J].Radiation Measurements,2020,132: 106260.

[47] Rebrova N V, Pushak A S, Grippa A Yu, et al. Crystal growth, luminescent and scintillation properties of K2BaX4∶Eu2+(X=Cl, Br)[J].Materials Chemistry and Physics,2017,192: 356-360.

[48] Stand L, Zhuravleva M, Chakoumakos B, et al. Scintillation properties of Eu2+ -doped KBa2I5 and K2BaI4[J].Journal of Luminescence,2016,169: 301-307.

[49] Bourret-Courchesne E D, Bizarri G, Borade R, et al. Eu2+ -doped Ba2CsI5, a new high-performance scintillator[J].Nuclear Instruments and Methods in Physics Research A,2009,612: 138-142.

[50] Bizarri G, Bourret-Courchesne E D, Yan Z, et al. Scintillation and optical properties of BaBrI∶Eu2+ and CsBa2I5∶Eu[J].IEEE Transaction on Nuclear Scienc,2011,58: 3403-3410.

[51] Alekhin Mikhail S, Biner Daniel A, Krmer Karl W, et al. Optical and scintillation properties of CsBa2I5∶Eu2+[J].Journal of Luminescence,2014,145: 723-728.

[52] Stand L, Zhuravleva M, Lindsey A, et al. Potassium strontium iodide: a new high light yield scintillator with 2.4% energy resolution[C]. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul,2013: 1-3.

[53] Stand L, Zhuravleva M, Camarda G, et al. Exploring growth conditions and Eu2+ concentration effects for KSr2I5∶Eu scintillator crystals[J].Journal of Crystal Growth,2016,439: 93-98.

[54] Stand L, Zhuravleva M, Johnson J, et al. Gamma-ray spectroscopic characterization of long, rapidly-grown KSr2I5∶Eu crystals[J].Nuclear Instruments and Methods in Physics Research A,2020,962: 163700-1637006.

[55] Borade R, Bourret-Courchesne E, Derenzo S. Scintillation properties of CsBa2Br5∶Eu2+[J].Nuclear Instruments and Metheds in Physics Research A,2011,652: 260-263.

[56] Stand L, Zhuravleva M, Wei H, et al. Crystal growth and scintillation properties of potassium strontium bromide[J].Optical Materials,2015,46: 59-63.

[57] Soundara-Pandian L, Hawrami R, Glodo J, et al. Lithium alkaline halides—next generation of dual mode scintillators[J].IEEE Transactions on Nuclear Science,2016,63: 490-496.

[58] Stand L, Zhuravleva M, Johnson J, et al. New high performing scintillators: RbSr2Br5∶Eu and RbSr2I5∶Eu[J].Optical Materials,2017,73: 408-414.

[59] Kim H J, Rooh G, Khan A, et al. Scintillation performance of the TlSr2I5 (Eu2+) single crystal[J].Optical Materials,2018,82: 7-10.

[60] Rooh G, Khan A, Kim H J, et al. TlSr2Br5: New intrinsic scintillator for X-ray and γ-ray detection[J].Optical Materials,2017,73: 523-526.

[61] Rowe Emmanuel, Bhattacharya Pijush, Tupitsyn Eugene, et al. A new lanthanide activator for iodide based scintillators: Yb2+[J].IEEE Transactions on Nuclear Science,2013,60: 1057-1060.

[62] Gascon M, Samulon E C, Gundiah G, et al. Scintillation properties of CsBa2I5 activated with monovalent ions Tl+, Na+ and In+[J].Journal of Luminescence,2014,156: 63-68.

[63] Stand L, Zhuravleva M, Chakoumakos B, et al. Crystal Growth and Scintillation Properties of Eu2+ doped Cs4CaI6 and Cs4SrI6[J].Journal of Crystal Growth,2018,486: 162-168.

[64] Rutstrom Daniel, Stand Luis, Koschan Merry, et al. Europium concentration effects on the scintillation properties of Cs4SrI6∶Eu and Cs4CaI6∶Eu single crystals for use in gamma spectroscopy[J].Journal of Luminescence,2019,216: 116740.

[65] Van′t Spijker J C, Dorenbos P, Haas J T M De, et al. Scintillation properties of K2LaCl5 with Ce doping[J].Radiation Measurements,1995,24: 379-381.

[66] Loef E V D van, Dorenbos P, Eijk C W E van, et al. Scintillation properties of K2LaX5∶Ce3+ (X=Cl, Br, I)[J].Nuclear Instruments and Methods in Physics Research A,2005,537: 232-236.

[67] Hawrami R, Batra A K, Aggarwal M D, et al. New scintillator materials (K2CeBr5 and Cs2CeBr5)[J].Journal of Crystal Growth,2008,310: 2099-2102.

[68] Kim H J, Rooh Gul, Kim Sunghwan. Tl2LaCl5(Ce3+): New fast and efficient scintillator for X- and γ-ray detection[J].Journal of Luminescence,2017,186: 219-222.

[69] Kim H J, Rooh Gul, Khan Arshad, et al. New Tl2LaBr5∶Ce3+ crystal scintillator for γ-rays detection[J].Nuclear Instruments and Methods in Physics Research A,2017,849: 72-75.

[70] Hawrami R, Ariesanti E, Wei H, et al. Tl2LaCl5∶Ce, high performance scintillator for gamma-ray detectors[J].Nuclear Instruments and Methods in Physics Research A,2017,869: 107-109.

[71] Khan A, Rooh G, Kim H J, et al. Ce3+-activated Tl2GdCl5: Novel halide scintillator for X-ray and γ-ray detection[J].Journal of Alloys and Compounds,2018,741: 878-882.

[72] Khan Arshad, Vuong Phan Quoc, Rooh Gul, et al. Crystal growth and Ce3+ concentration optimization in Tl2LaCl5: An excellent scintillator for the radiation detection[J].Journal of Alloys and Compounds,2020,827: 154366.

[73] Shirwadkar Urmila, Loyd Matthew, Du Mao-Hua, et al. Thallium-based scintillators for high-resolution gamma-ray spectroscopy∶Ce3+-doped Tl2LaCl5 and Tl2LaBr5[J].Nuclear Instruments and Methods in Physics Research A,2020,962: 163684.

[74] Combes C M, Dorenbos P, Eijk C W E van, et al. Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6∶Ce3+ crystals[J].Journal of Luminescence,1999,82: 299-305.

[75] Loef E V D van, Glodo J, Higgins W M, et al. Optical and scintillation properties of Cs2LiYCl6∶Ce3+ and Cs2LiYCl6: Pr3+ crystals[J].IEEE Transactions on Nuclear Science,2005,52: 1819-1822.

[76] Glodo J, Loef E van, Hawrami R, et al. Selected properties of Cs2LiYCl6, Cs2LiLaCl6, and Cs2LiLaBr6 scintillators[J].IEEE Transactions on Nuclear Science,2011,58: 333-338.

[77] Glodo Jarek, Hawrami Rastgo, Loef Edgar van, et al. Dual gamma neutron detection with Cs2LiLaCl6[M].Proc. of SPIE Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XI,2009,7449: 74490E.

[78] Gundiah G, Brennan K, Yan Z, et al. Structure and scintillation properties of Ce3+-activated Cs2NaLaCl6, Cs3LaCl6, Cs2NaLaBr6, Cs3LaBr6, Cs2NaLaI6 and Cs3LaI6[J].Journal of Luminescence,2014,149: 374-384.

[79] Samulon E C, Gundiah G, Gascón M, et al. Luminescence and scintillation properties of Ce3+ -activzated Cs2NaGdCl6, Cs3GdCl6, Cs2NaGdBr6 and Cs3GdBr6[J].Journal of Luminescence,2014,153: 64-72.

[80] Kim H J, Rooh G, Park H, et al. Luminescence and scintillation properties of the new Ce-doped Tl2LiGdCl6 single crystals[J].Journal of Luminescence,2015,164: 86-89.

[81] Birowosuto M D, Dorenbos P, Eijk C W E van, et al. Scintillation and luminescence properties of Ce3+ doped ternary cesium rare-earth halides[J].Physica Status Solidi A,2007,204: 850-860.

[82] Zhuravleva M,Yang K, Melcher C L. Crystal growth and scintillation properties of Cs3CeCl6 and CsCe2Cl7[J].J Crystal Growth,2011,318: 809-812.

[83] Dorenbos P, Spijker J C van’t, Frijns O W V, et al. Scintillation properties of RbGd2Br7∶Ce3+ crystals; fast, efficient, and high density scintillators[J].Nuclear Instruments and Methods in Physics Research B,1997,132: 728-731.

[84] Guillot-Nol O, Spijker J C van’t, Haas J T M de, et al. Scintillation properties of RbGd2Br7∶Ce advantages and limitations[J].IEEE Transactions on Nuclear Science,1999,46: 1274-1284.

[85] Khan Arshad, Rooh Gul, Kim Hong Joo, et al. Scintillation properties of TlGd2Cl7 (Ce3+)single crystal[J].IEEE Transactions on Nuclear Science,2018,65: 2152-2156.

[86] Burger A, Rowe E, Groza M, et al. Cesium hafnium chloride: a high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy[J].Applied Physics Letters,2015,107: 143505-7.

[87] Saeki K, Fujimoto Y, Koshimizu M, et al. Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6[J].Applied Physics Express,2016,9: 042602-4.

[88] Lam Stephanie, Guguschev Christo, Burger Arnold, et al. Crystal growth and scintillation performance of Cs2HfCl6 and Cs2HfCl4Br2[J].Journal of Crystal Growth,2018,483: 121-124.

[89] Ariesanti E, Hawrami R, Burger A, et al. Improved growth and scintillation properties of intrinsic, non-hygroscopic scintillator Cs2HfCl6[J].Journal of Luminescence,2020,217: 116784.

[90] Kodama Shohei, Kurosawa Shunsuke, Yamaji Akihiro, et al., Growth and luminescent properties of Ce and Eu doped Cesium Hafnium Iodide single crystalline scintillators[J].Journal of Crystal Growth,2018,492: 1-5.

[91] Giaz A, Pellegri L, Camera F, et al. The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons[J].Nuclear Instruments and Methods in Physics A,2016,810: 132-139.

[92] Shirwadkar U, Glodo J, Loef E V van, et al. Scintillation properties of Cs2LiLaBr6 (CLLB) crystals with varying Ce3+ concentration[J].Nuclear Instruments and Methods in Physics A,2011,652: 268-270.

[93] Kim H J, Rooh Gul, Park H, et al. Tl2LiYCl6(Ce3+): New Tl-based elpasolite scintillation material[J].IEEE Transactions on Nuclear Science,2016,63: 439-442.

[94] Hawrami R, Ariesanti E, Soundara-Pandian L, et al. Tl2LiYCl6∶Ce: A new elpasolite scintillator[J].IEEE Transactions on Nuclear Science,2016,63: 2838-2841.

[95] Rooh G, Kim H J, Jang J, et al. Scintillation characterizations of Tl2LiLuCl6∶Ce3+ single crystal[J].Journal of Luminescence,2017,187: 347-351.

[96] Yang Kan, Menge Peter R, Lejay Julien, et al. Improving the neutron and gamma-ray response of Cs2LiLaBr6∶Ce3+ [C].2013 IEEE Nuclear Science Symposium & Medical Imaging Conference, Oct.27 - Nov.2, 2013, Seoul, Korea.

[97] Shirwadkar U, Hawrami R, Glodo J, et al. Novel scintillation material Cs2LiLaBr6-xClx∶Ce for gamma-ray and neutron spectroscopy[C].2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC),N41-1,1963-1967.

[98] Pan S K, Zhang P, Zhu H B, et al. Crystal growth, luminescence and scintillation properties of mixed Ce: Cs2LiLaxY1-xCl6 (0

[99] Yang K, Menge Peter R, Ouspenski Vladimir. NaI∶Tl,Li - a large volume neutron-gamam scintillator with exceptional pules shape discrimination [C].IEEE NSS-MIC, Oct. 29-Nov.5, Strasbourg, France.

[100] Bhattacharya Pijush, Wart Megan, Miller Stuart, et al. Codoped lithium sodium iodide With Tl+ and Eu2+ activators for neutron detector[J].IEEE Transactions on Nuclear Science,2019,66: 2136-2139.

[101] https: //www.crystals.saint-gobain.com/products/standard-and-enhanced-lanthanum-bromide.

[102] Yan Z, Shalapsk T, Bourret E D. Czochralski growth of the mixed halides BaBrCl and BaBrCl∶Eu[J].Journal of Crystal Growth,2016,435: 42-45.

[103] Lam Stephanie, Swider Stacy E, Datta Amlan, et al. the influence of cation impurities on the scintillation performance of SrI2(Eu)[J].IEEE Transactions on Nuclear Science,2015,62: 3397-3404.

[104] Lindsey Adam C, Loyd Matthew, Patel Maulik K, et al. Determination of thermal expansion of KCaI3 using in-situ high temperature powder X-ray diffraction[J].Materials Chemistry and Physics,2018,212: 161-166.

[105] Lindsey Adam C, Wu Y T, Zhuravleva Mariya, et al. Multi-ampoule Bridgman growth of halide scintillator crystals using the self-seeding method[J].Journal of Crystal Growth, 2017, 470: 20-26.

[106] Lindsey A C, McAlexander W, Stand L, et al. Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3∶Eu scintillator[J].Journal of Crystal Growth,2015,427: 42-47.

[107] Galenin E, Sidletskiy O, Dujardin C, et al. Growth and characterization of SrI2∶Eu crystals fabricated by the Czochralski method[J].IEEE Transactions on Nuclear Science,2018,65: 2174-2177.

[108] Smerechuk A, Galenin E, Nesterkina V, et al. Growth and scintillation performances of SrI2∶Eu with low activator concentration[J].Journal of Crystal Growth,2019,521: 41-45.

[109] Derenzo Stephen E, Bizarri Gregory A, Bourret Edith, et al. 15 lutetium compounds screened for Ce3+ activated scintillation[J].Nuclear Instruments and Methods in Physics Research A,2018,908: 325-332.

[110] Derenzo Stephen, Bizarri Gregory, Borade Ramesh, et al. New scintillators discovered by high-throughput screening[J].Nuclear Instruments and Methods in Physics Research A,2011,652: 247-250.

[111] 桂 强,张春生,邹本飞,等. 直径2英寸氯化铈掺杂溴化镧晶体的制备与闪烁性能研究[J].人工晶体学报,2013,42(4): 616-619.

张明荣. 非氟卤化物闪烁晶体的研究现状和发展趋势[J]. 人工晶体学报, 2020, 49(5): 753. ZHANG Mingrong. Research Status and Development Trend of Non-fluorinated Halide Scintillation Crystals[J]. Journal of Synthetic Crystals, 2020, 49(5): 753.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!