人工晶体学报, 2020, 49 (5): 753, 网络出版: 2020-08-06   

非氟卤化物闪烁晶体的研究现状和发展趋势

Research Status and Development Trend of Non-fluorinated Halide Scintillation Crystals
作者单位
北京玻璃研究院,北京 101111
摘要
本文根据化学组成的特点将非氟卤化物闪烁晶体划分为AX、MX、RX3、AMX3、A2MX4、A4MX6、AM2X5、ARX4、A2RX5、A2A′RX6、A3RX6、A2TX6型等,其中A、M、R和T分别代表+1价、+2价、+3价和+4价的金属元素,X代表除氟以外的卤族元素,A′表示与A不同的+1价金属元素。着重介绍了其中光输出高于40 000 ph/MeV的γ射线探测用闪烁晶体以及光输出高于20 000 ph/MeV的中子和γ射线双探测用闪烁晶体,并对它们的研究现状和发展趋势进行了简要评述。
Abstract
The non-fluorinated halide scintillation crystals are divided into AX, MX, RX3, AMX3, A2MX4, A4MX6, AM2X5, ARX4, A2RX5, A2A′RX6, A3RX6, A2TX6 and so on according to the chemical composition characteristics, where A, M, R and T represent metal elements with the valence of +1, +2, +3 and +4, respectively; X for halogen elements except fluorine, and A′ for +1 valent metal element different from A. The non-fluorinated halide scintillation crystals with light output of more than 40 000 ph/MeV for γ-ray detection, and those of more than 20 000 ph/MeV for both thermal neutron and γ-ray detection are emphatically introduced, and their research status and development trend are briefly reviewed.
参考文献

[1] Iltis Alain, Mayhugh M R, Menge P, et al. Lanthanum halide scintillators: Properties and applications[J].Nuclear Instruments and Methods in Physics Research A,2006,563: 359-363.

[2] Shiran N, Gektin A, Boyarintseva Y, et al. Modification of NaI crystal scintillation properties by Eu-doping[J].Optical Materials,2010,32: 1345-1348.

[3] Yang K, Menge P R. Improving γ-ray energy resolution, non-proportionality, and decay time of NaI∶Tl+ with Sr2+ and Ca2+ co-doping[J].Journal of Applied Physics,2015,118: 213106.

[4] Khodyuk I V, Messina S A, Hayden T J, et al. Optimization of scintillation performance via a combinatorial multi-element co-doping strategy: Application to NaI∶Tl[J].Journal of Applied Physics,2015,118: 084901.

[5] Brecher C, Lempicki A, Miller S R, et al. Suppression of afterglow in CsI∶Tl by codoping with Eu2+—I: Experimental[J].Nuclear Instruments and Methods in Physics Research A, 2006, 558: 450-457.

[6] Nagarkar V V, Brecher C, Ovechkina E E, et al. Scintillation properties of CsI∶Tl crystals codoped with Sm2+[J].IEEE Transactions on Nuclear Science,2008,55: 1270-1274.

[7] Wu Y T, Ren G H, Nikl M, et al. CsI∶Tl+,Yb2+: Ultra-high light yield scintillator with reduced afterglow[J].Cryst. Eng. Comm.,2014,16: 3312-3317.

[8] Hawrami R, Burger A, Aggarwal M D, et al. SrI2 a Novel scintilaator crystal for nuclear isotope identifiers [M].Proc. SPIE.,7079,2008: 70790-70791.

[9] Cherepy Nerine J, Payne Steve A, Asztalos Stephen J, et al. Scintillators with potential to supersede lanthanum bromide[J].IEEE Transactions on Nuclear Science,2009,56: 873-880.

[10] Iida Takashi, Kamada Kei, Yoshino Masao, et al. High-light-yield calcium iodide (CaI2) scintillator for astroparticle physics[J].Nuclear Instruments and Methods in Physics Research A,2020,958: 162629-162631.

[11] Alekhin Mikhail S, Biner Daniel A, Kraemer Karl W, et al. Optical and scintillation properties of SrI2: Yb2+[J]. Optical Materials,2014,37: 382-386.

[12] Yan Zewu, Gundiah Gautam, Bizarri Gregory A, et al. Eu2+-activated BaCl2, BaBr2 and BaI2 scintillators revisited[J].Nuclear Instruments and Methods in Physics Research A,2014,735: 83-87.

[13] Gundiah G, Bizarri G, Hanrahan S M, et al. Structure and scintillation of Eu2+-activated solid solutions in the BaBr2-BaI2 system[J]. Nuclear Instruments & Methods in Physics Research A,2011,652: 234-237.

[14] Shalaev A A, Shendrik R, Myasnikova A S, et al. Luminescence of BaBrI and SrBrI single crystals doped with Eu2+[J].Optical Materials,2018,79: 84-89.

[15] Loef E V van, Wilson C M, Cherepy N J, et al. Crystal growth and scintillation properties of strontium iodide scintillators[J].IEEE Transactions on Nuclear Science,2009,56: 869-872.

[16] Wu Yuntao, Li Qi, Rutstrom Daniel J, et al. Effects of zirconium codoping on the optical and scintillation properties of SrI2∶Eu single crystals[J].Nuclear Instruments and Methods in Physics Research A,2020,954: 161242.

[17] Alekhin Mikhail S, Haas Johan T M, Kramer Karl W, et al. Scintillation properties of and self absorption in SrI2∶Eu2+[J].IEEE Transactions on Nuclear Science,2011,58: 2519-2527.

[18] Nishimoto Kei, Yokota Yuui, Kurosawa Shunsuke, et al. Eu concentration dependence on scintillation properties of Eu doped SrI2 single crystals grown by modified micro-pulling-down method[J].Optical Materials,2014,36: 1946-1949.

[19] Swider S, Lam S, Motakef S, et al. Impurity segregation in zone-refined prec ursors for crystalline halide scintillators[J].Nuclear Instruments and Methods in Physics Research A,2015,784: 5-8.

[20] Kawai Taketoshi, Sakuragi Shiro, Hashimoto Satoshi. Luminescence properties of pure and Eu-doped SrI2 crystals purified by a “Liquinert” process and grown by vertical Bridgman method[J].Journal of Luminescence,2016,176: 58-64.

[21] Boatner L A, Ramey J O, Kolopus J A, et al. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth[J].Nuclear Instruments and Methods in Physics Research A,2015,786: 23-31.

[22] Shah K S, Glodo J, Klugerman M, Higgins W, et al. LuI3∶Ce - A new scintillator for gamma ray spectroscopy[J].IEEE Transactions on Nuclear Science,2004,51: 2302-2305.

[23] Birowosuto M D, Dorenbos P, Bizarri G, et al. Temperature dependent scintillation and luminescence characteristics of GdI3∶Ce3+[J].IEEE Transactions on Nuclear Science,2008,55: 1164-1169.

[24] Glodo J, Loef E V D van, Higgins W M, et al. Mixed lutetium iodide compounds[J].IEEE Trans. Nucl. Sci.,2008,NS-55: 1496-1500.

[25] Loef E V D van,Dorenbos P,Eijk C W E van,et al. Scintillation properties of LaBr3∶Ce3+ crystals: fast, efficient and high-energy-resolution scintillators[J].Nuclear Instruments and Methods in Physics Research A,2002,486: 254-25.

[26] Menge Peter R, Gautier G, Iltis A, et al. Performance of large lanthanum bromide scintillators[J].Nuclear Instruments and Methods in Physics Research A,2007,579: 6-10.

[27] Wolszczak W, Dorenbos P. Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators[J].Nuclear Instruments and Methods in Physics Research A,2017,857: 66-74.

[28] Alekhin M S, de Haas J T M, Khodyuk I V, et al. Improvement of gamma-ray energy resolution of LaBr3∶Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping[J].Applied Physics Letters,2013,102: 161915.

[29] Benedetto A, Valladeau S, Richaud D, et al. The effect of LaBr3∶Ce single crystal aliovalent co-doping on its mechanical strength[J].Nuclear Instruments and Methods in Physics Research A,2015,784: 17-22.

[30] Yang K, Zhuravleva M, Melcher C L. Crystal growth and characterization of CsSr1-xEuxI3 high light yield scintillators[J].Physica Status Solidi-Rapid Research Letters,2011,5: 43-45.

[31] Zhuravleva M, Blalock B, Yang K, et al. New single crystal scintillators: CsCaCl3∶Eu and CsCaI3∶Eu[J].Journal of Crystal growth,2012,352: 115-119.

[32] Lindsey Adam C, Zhuravleva Mariya, Stand Luis, et al. Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator[J].Optical Materials,2015,48: 1-6.

[33] Cherginets V L, Rebrova N V, Grippa A Yu, et al. Scintillation properties of CsSrX3∶Eu2+ (CsSr1-yEuyX3, X=Cl, Br; 0≤y≤0.05) single crystals grown by the Bridgman method[J].Materials Chemistry and Physics,2014,143: 1296-1299.

[34] Stand L, Zhuravleva M, Chakoumakos B, et al. Characterization of mixed halide scintillators: CsSrBrI2∶Eu, CsCaBrI2∶Eu and CsSrClBr2∶Eu[J].Journal of Luminescence,2019,207: 70-77.

[35] Wu Y T, Zhuravleva Mariya, Lindsey Adam C, et al. Eu2+ concentration effects in KCa0.8Sr0.2I3∶Eu2+: A novel high-performance scintillator[J].Nuclear Instruments and Methods in Physics Research A,2016,820: 132-140.

[36] Wei H, Zhuravleva M, Yang K, et al. Effect of Ba substitution in CsSrI3∶Eu2+[J].Journal of Crystal Growth,2013,384: 27-32.

[37] Rebrova N V, Grippa A Yu, Pushak A S, et al. Crystal growth and characterization of Eu2+ doped RbCaX3 (X=Cl, Br) scintillators[J].Journal Crystal Growth,2017,466: 39-44.

[38] Shwetha G, Kanchana V, Vaitheeswaran G. CsMgCl3: A promising cross luminescence material[J].Journal of Solid State Chemistry,2015,227: 110-116.

[39] Kobayashi M, Omata K, Sugimoto S, et al. Scintillation characteristics of CsPbCl3 single crystals[J].Nuclear Instruments and Methods in Physics Research A,2008, 592: 369-373.

[40] Fujimoto Yutaka, Saeki Keiichiro, Yanagida Takayuki, et al. Luminescence and scintillation properties of TlCdCl3 crystal[J].Radiation Measurements,2017,106: 151-154.

[41] Hawrami R, Ariesanti E, Wei H, et al. Intrinsic scintillators: TlMgCl3 and TlCaI3[J].Journal of Crystal Growth,2017,475: 216-219.

[42] Khan Arshad, Rooh Gul, Kim H J, et al. Intrinsically activated TlCaCl3: A new halide scintillator for radiation detection[J].Radiation Measurements,2017,107: 115-118.

[43] Loyd Matthew, Lindsey Adam, Wu Y T, et al. Growth of large size (≥38 mm diameter) KCaI3∶Eu scintillator crystals[J].Nuclear Instruments and Methods in Physics Research A,2019,914: 8-14.

[44] Bourret-Courchesne E D, Bizarri G, Borade R, et al. Crystal growth and characterization of alkali-earth halide scintillators[J].Journal of Crystal Growth,2012,352: 78-83.

[45] Yahaba Natsuna, Koshimizu Masanori, Sun Yan, et al. X-ray detection capability of a Cs2ZnCl4 single-crystal scintillator[J].Applied Physics Express,2014,7: 062602.

[46] Takahashi Kentaro, Kimura Hiromi, Nakauchi Daisuke, et al. Photoluminescence and scintillation properties of undoped and Tl-doped Cs2BaBr4 crystals[J].Radiation Measurements,2020,132: 106260.

[47] Rebrova N V, Pushak A S, Grippa A Yu, et al. Crystal growth, luminescent and scintillation properties of K2BaX4∶Eu2+(X=Cl, Br)[J].Materials Chemistry and Physics,2017,192: 356-360.

[48] Stand L, Zhuravleva M, Chakoumakos B, et al. Scintillation properties of Eu2+ -doped KBa2I5 and K2BaI4[J].Journal of Luminescence,2016,169: 301-307.

[49] Bourret-Courchesne E D, Bizarri G, Borade R, et al. Eu2+ -doped Ba2CsI5, a new high-performance scintillator[J].Nuclear Instruments and Methods in Physics Research A,2009,612: 138-142.

[50] Bizarri G, Bourret-Courchesne E D, Yan Z, et al. Scintillation and optical properties of BaBrI∶Eu2+ and CsBa2I5∶Eu[J].IEEE Transaction on Nuclear Scienc,2011,58: 3403-3410.

[51] Alekhin Mikhail S, Biner Daniel A, Krmer Karl W, et al. Optical and scintillation properties of CsBa2I5∶Eu2+[J].Journal of Luminescence,2014,145: 723-728.

[52] Stand L, Zhuravleva M, Lindsey A, et al. Potassium strontium iodide: a new high light yield scintillator with 2.4% energy resolution[C]. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul,2013: 1-3.

[53] Stand L, Zhuravleva M, Camarda G, et al. Exploring growth conditions and Eu2+ concentration effects for KSr2I5∶Eu scintillator crystals[J].Journal of Crystal Growth,2016,439: 93-98.

[54] Stand L, Zhuravleva M, Johnson J, et al. Gamma-ray spectroscopic characterization of long, rapidly-grown KSr2I5∶Eu crystals[J].Nuclear Instruments and Methods in Physics Research A,2020,962: 163700-1637006.

[55] Borade R, Bourret-Courchesne E, Derenzo S. Scintillation properties of CsBa2Br5∶Eu2+[J].Nuclear Instruments and Metheds in Physics Research A,2011,652: 260-263.

[56] Stand L, Zhuravleva M, Wei H, et al. Crystal growth and scintillation properties of potassium strontium bromide[J].Optical Materials,2015,46: 59-63.

[57] Soundara-Pandian L, Hawrami R, Glodo J, et al. Lithium alkaline halides—next generation of dual mode scintillators[J].IEEE Transactions on Nuclear Science,2016,63: 490-496.

[58] Stand L, Zhuravleva M, Johnson J, et al. New high performing scintillators: RbSr2Br5∶Eu and RbSr2I5∶Eu[J].Optical Materials,2017,73: 408-414.

[59] Kim H J, Rooh G, Khan A, et al. Scintillation performance of the TlSr2I5 (Eu2+) single crystal[J].Optical Materials,2018,82: 7-10.

[60] Rooh G, Khan A, Kim H J, et al. TlSr2Br5: New intrinsic scintillator for X-ray and γ-ray detection[J].Optical Materials,2017,73: 523-526.

[61] Rowe Emmanuel, Bhattacharya Pijush, Tupitsyn Eugene, et al. A new lanthanide activator for iodide based scintillators: Yb2+[J].IEEE Transactions on Nuclear Science,2013,60: 1057-1060.

[62] Gascon M, Samulon E C, Gundiah G, et al. Scintillation properties of CsBa2I5 activated with monovalent ions Tl+, Na+ and In+[J].Journal of Luminescence,2014,156: 63-68.

[63] Stand L, Zhuravleva M, Chakoumakos B, et al. Crystal Growth and Scintillation Properties of Eu2+ doped Cs4CaI6 and Cs4SrI6[J].Journal of Crystal Growth,2018,486: 162-168.

[64] Rutstrom Daniel, Stand Luis, Koschan Merry, et al. Europium concentration effects on the scintillation properties of Cs4SrI6∶Eu and Cs4CaI6∶Eu single crystals for use in gamma spectroscopy[J].Journal of Luminescence,2019,216: 116740.

[65] Van′t Spijker J C, Dorenbos P, Haas J T M De, et al. Scintillation properties of K2LaCl5 with Ce doping[J].Radiation Measurements,1995,24: 379-381.

[66] Loef E V D van, Dorenbos P, Eijk C W E van, et al. Scintillation properties of K2LaX5∶Ce3+ (X=Cl, Br, I)[J].Nuclear Instruments and Methods in Physics Research A,2005,537: 232-236.

[67] Hawrami R, Batra A K, Aggarwal M D, et al. New scintillator materials (K2CeBr5 and Cs2CeBr5)[J].Journal of Crystal Growth,2008,310: 2099-2102.

[68] Kim H J, Rooh Gul, Kim Sunghwan. Tl2LaCl5(Ce3+): New fast and efficient scintillator for X- and γ-ray detection[J].Journal of Luminescence,2017,186: 219-222.

[69] Kim H J, Rooh Gul, Khan Arshad, et al. New Tl2LaBr5∶Ce3+ crystal scintillator for γ-rays detection[J].Nuclear Instruments and Methods in Physics Research A,2017,849: 72-75.

[70] Hawrami R, Ariesanti E, Wei H, et al. Tl2LaCl5∶Ce, high performance scintillator for gamma-ray detectors[J].Nuclear Instruments and Methods in Physics Research A,2017,869: 107-109.

[71] Khan A, Rooh G, Kim H J, et al. Ce3+-activated Tl2GdCl5: Novel halide scintillator for X-ray and γ-ray detection[J].Journal of Alloys and Compounds,2018,741: 878-882.

[72] Khan Arshad, Vuong Phan Quoc, Rooh Gul, et al. Crystal growth and Ce3+ concentration optimization in Tl2LaCl5: An excellent scintillator for the radiation detection[J].Journal of Alloys and Compounds,2020,827: 154366.

[73] Shirwadkar Urmila, Loyd Matthew, Du Mao-Hua, et al. Thallium-based scintillators for high-resolution gamma-ray spectroscopy∶Ce3+-doped Tl2LaCl5 and Tl2LaBr5[J].Nuclear Instruments and Methods in Physics Research A,2020,962: 163684.

[74] Combes C M, Dorenbos P, Eijk C W E van, et al. Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6∶Ce3+ crystals[J].Journal of Luminescence,1999,82: 299-305.

[75] Loef E V D van, Glodo J, Higgins W M, et al. Optical and scintillation properties of Cs2LiYCl6∶Ce3+ and Cs2LiYCl6: Pr3+ crystals[J].IEEE Transactions on Nuclear Science,2005,52: 1819-1822.

[76] Glodo J, Loef E van, Hawrami R, et al. Selected properties of Cs2LiYCl6, Cs2LiLaCl6, and Cs2LiLaBr6 scintillators[J].IEEE Transactions on Nuclear Science,2011,58: 333-338.

[77] Glodo Jarek, Hawrami Rastgo, Loef Edgar van, et al. Dual gamma neutron detection with Cs2LiLaCl6[M].Proc. of SPIE Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XI,2009,7449: 74490E.

[78] Gundiah G, Brennan K, Yan Z, et al. Structure and scintillation properties of Ce3+-activated Cs2NaLaCl6, Cs3LaCl6, Cs2NaLaBr6, Cs3LaBr6, Cs2NaLaI6 and Cs3LaI6[J].Journal of Luminescence,2014,149: 374-384.

[79] Samulon E C, Gundiah G, Gascón M, et al. Luminescence and scintillation properties of Ce3+ -activzated Cs2NaGdCl6, Cs3GdCl6, Cs2NaGdBr6 and Cs3GdBr6[J].Journal of Luminescence,2014,153: 64-72.

[80] Kim H J, Rooh G, Park H, et al. Luminescence and scintillation properties of the new Ce-doped Tl2LiGdCl6 single crystals[J].Journal of Luminescence,2015,164: 86-89.

[81] Birowosuto M D, Dorenbos P, Eijk C W E van, et al. Scintillation and luminescence properties of Ce3+ doped ternary cesium rare-earth halides[J].Physica Status Solidi A,2007,204: 850-860.

[82] Zhuravleva M,Yang K, Melcher C L. Crystal growth and scintillation properties of Cs3CeCl6 and CsCe2Cl7[J].J Crystal Growth,2011,318: 809-812.

[83] Dorenbos P, Spijker J C van’t, Frijns O W V, et al. Scintillation properties of RbGd2Br7∶Ce3+ crystals; fast, efficient, and high density scintillators[J].Nuclear Instruments and Methods in Physics Research B,1997,132: 728-731.

[84] Guillot-Nol O, Spijker J C van’t, Haas J T M de, et al. Scintillation properties of RbGd2Br7∶Ce advantages and limitations[J].IEEE Transactions on Nuclear Science,1999,46: 1274-1284.

[85] Khan Arshad, Rooh Gul, Kim Hong Joo, et al. Scintillation properties of TlGd2Cl7 (Ce3+)single crystal[J].IEEE Transactions on Nuclear Science,2018,65: 2152-2156.

[86] Burger A, Rowe E, Groza M, et al. Cesium hafnium chloride: a high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy[J].Applied Physics Letters,2015,107: 143505-7.

[87] Saeki K, Fujimoto Y, Koshimizu M, et al. Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6[J].Applied Physics Express,2016,9: 042602-4.

[88] Lam Stephanie, Guguschev Christo, Burger Arnold, et al. Crystal growth and scintillation performance of Cs2HfCl6 and Cs2HfCl4Br2[J].Journal of Crystal Growth,2018,483: 121-124.

[89] Ariesanti E, Hawrami R, Burger A, et al. Improved growth and scintillation properties of intrinsic, non-hygroscopic scintillator Cs2HfCl6[J].Journal of Luminescence,2020,217: 116784.

[90] Kodama Shohei, Kurosawa Shunsuke, Yamaji Akihiro, et al., Growth and luminescent properties of Ce and Eu doped Cesium Hafnium Iodide single crystalline scintillators[J].Journal of Crystal Growth,2018,492: 1-5.

[91] Giaz A, Pellegri L, Camera F, et al. The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons[J].Nuclear Instruments and Methods in Physics A,2016,810: 132-139.

[92] Shirwadkar U, Glodo J, Loef E V van, et al. Scintillation properties of Cs2LiLaBr6 (CLLB) crystals with varying Ce3+ concentration[J].Nuclear Instruments and Methods in Physics A,2011,652: 268-270.

[93] Kim H J, Rooh Gul, Park H, et al. Tl2LiYCl6(Ce3+): New Tl-based elpasolite scintillation material[J].IEEE Transactions on Nuclear Science,2016,63: 439-442.

[94] Hawrami R, Ariesanti E, Soundara-Pandian L, et al. Tl2LiYCl6∶Ce: A new elpasolite scintillator[J].IEEE Transactions on Nuclear Science,2016,63: 2838-2841.

[95] Rooh G, Kim H J, Jang J, et al. Scintillation characterizations of Tl2LiLuCl6∶Ce3+ single crystal[J].Journal of Luminescence,2017,187: 347-351.

[96] Yang Kan, Menge Peter R, Lejay Julien, et al. Improving the neutron and gamma-ray response of Cs2LiLaBr6∶Ce3+ [C].2013 IEEE Nuclear Science Symposium & Medical Imaging Conference, Oct.27 - Nov.2, 2013, Seoul, Korea.

[97] Shirwadkar U, Hawrami R, Glodo J, et al. Novel scintillation material Cs2LiLaBr6-xClx∶Ce for gamma-ray and neutron spectroscopy[C].2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC),N41-1,1963-1967.

[98] Pan S K, Zhang P, Zhu H B, et al. Crystal growth, luminescence and scintillation properties of mixed Ce: Cs2LiLaxY1-xCl6 (0

[99] Yang K, Menge Peter R, Ouspenski Vladimir. NaI∶Tl,Li - a large volume neutron-gamam scintillator with exceptional pules shape discrimination [C].IEEE NSS-MIC, Oct. 29-Nov.5, Strasbourg, France.

[100] Bhattacharya Pijush, Wart Megan, Miller Stuart, et al. Codoped lithium sodium iodide With Tl+ and Eu2+ activators for neutron detector[J].IEEE Transactions on Nuclear Science,2019,66: 2136-2139.

[101] https: //www.crystals.saint-gobain.com/products/standard-and-enhanced-lanthanum-bromide.

[102] Yan Z, Shalapsk T, Bourret E D. Czochralski growth of the mixed halides BaBrCl and BaBrCl∶Eu[J].Journal of Crystal Growth,2016,435: 42-45.

[103] Lam Stephanie, Swider Stacy E, Datta Amlan, et al. the influence of cation impurities on the scintillation performance of SrI2(Eu)[J].IEEE Transactions on Nuclear Science,2015,62: 3397-3404.

[104] Lindsey Adam C, Loyd Matthew, Patel Maulik K, et al. Determination of thermal expansion of KCaI3 using in-situ high temperature powder X-ray diffraction[J].Materials Chemistry and Physics,2018,212: 161-166.

[105] Lindsey Adam C, Wu Y T, Zhuravleva Mariya, et al. Multi-ampoule Bridgman growth of halide scintillator crystals using the self-seeding method[J].Journal of Crystal Growth, 2017, 470: 20-26.

[106] Lindsey A C, McAlexander W, Stand L, et al. Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3∶Eu scintillator[J].Journal of Crystal Growth,2015,427: 42-47.

[107] Galenin E, Sidletskiy O, Dujardin C, et al. Growth and characterization of SrI2∶Eu crystals fabricated by the Czochralski method[J].IEEE Transactions on Nuclear Science,2018,65: 2174-2177.

[108] Smerechuk A, Galenin E, Nesterkina V, et al. Growth and scintillation performances of SrI2∶Eu with low activator concentration[J].Journal of Crystal Growth,2019,521: 41-45.

[109] Derenzo Stephen E, Bizarri Gregory A, Bourret Edith, et al. 15 lutetium compounds screened for Ce3+ activated scintillation[J].Nuclear Instruments and Methods in Physics Research A,2018,908: 325-332.

[110] Derenzo Stephen, Bizarri Gregory, Borade Ramesh, et al. New scintillators discovered by high-throughput screening[J].Nuclear Instruments and Methods in Physics Research A,2011,652: 247-250.

[111] 桂 强,张春生,邹本飞,等. 直径2英寸氯化铈掺杂溴化镧晶体的制备与闪烁性能研究[J].人工晶体学报,2013,42(4): 616-619.

张明荣. 非氟卤化物闪烁晶体的研究现状和发展趋势[J]. 人工晶体学报, 2020, 49(5): 753. ZHANG Mingrong. Research Status and Development Trend of Non-fluorinated Halide Scintillation Crystals[J]. Journal of Synthetic Crystals, 2020, 49(5): 753.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!