大气与环境光学学报, 2016, 11 (2): 81, 网络出版: 2016-03-29  

离子诱导气溶胶成核过程的研究

Study of the Process of Aerosol Particle Formation by Ion-Induced Nucleation
温作赢 1,2,3,*顾学军 1,3荣华 1,3,4朱宇鹏 1,3唐小锋 1,3盖艳波 1,3胡长进 1,3赵卫雄 1,3张为俊 1,3,4
作者单位
1 中国科学院安徽光学精密机械研究所中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院, 安徽 合肥 230026
3 中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
4 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
摘要
离子诱导成核是大气气溶胶形成的重要路径之一。大气中团簇离子的形成,主要由宇宙射线电离空气产生的初级离子 与H2 O、H2 SO4 、HNO3 、NH3 、有机物等物质发生的离子-分子反应而产生。成核是团簇离子生长和蒸发相互竞争的一个过程,团簇离子生 长到临界核尺寸时,便可自发生长。研究表明临界核大小约1.6 nm,对应粒子的质量数在5000 amu以上。离子诱导生成的气溶胶粒子对气候的影响以 及离子诱导成核在大气成核事件中是否占主要作用还存在很大争议,这需要进行进一步的外场观察、理论模拟、实验室研究来充分弄清离子诱导成核机理。
Abstract
Ion-induced nucleation is one of the most significant pathway of aerosol particle formation in the atmosphere. Air molecules are radiated by the cosmic ray to generate a mass of initial primary ions which will quickly react with common trace air constituents, such as H2 O, H2 SO4 , HNO3 , NH3 and organic species to form more stable ions, called as cluster ions. Processes for aerosol formation are the competition between growth and evaporation. When the critical nucleus forms, the formed small aerosol particle growth become spontaneous. This critical diameter can be calculated and predicted to be about 1.6 nm with mass number more than 5000 amu at standard atmospheric condition. However, there exist many controversies on ion-induced nucleation to what extent of influencing global climate and new particle nucleation. More observations, molding and laboratory studies should be carried out to explore the mechanism of ion-induced nucleation clearly.
参考文献

[1] Zhang R, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere[J]. Chem. Rev., 2011, 112(3): 1957-2011.

[2] Chen Y, Penner J E. Uncertainty analysis for estimates of the first indirect aerosol effect[J]. Atmos. Chem. Phys., 2005, 5(11): 2935-2948.

[3] Lohmann U, Feichter J. Global indirect aerosol effects: a review[J]. Atmos. Chem. Phys., 2005, 5(3): 715-737.

[4] Fan J, Zhang R, Tao W K, et al. Effects of aerosol optical properties on deep convective clouds and radiative forcing[J]. J. Geophys. Res.: Atmos. (1984-2012), 2008, 113(D8): 1-16.

[5] Covert D S, Kapustin V N, Quinn P K, et al. New particle formation in the marine boundary-layer[J]. J. Geophys. Res.: Atmos., 1992, 97(D18): 20581-20589.

[6] Christensen P S, Wedel S, Livbjerg H. The kinetics of the photolytic production of aerosols from SO2 and NH3 in humid air[J]. Chem. Eng. Sci., 1994, 49(24): 4605-4614.

[7] Weber R, McMurry P H, Mauldin R, et al. New particle formation in the remote troposphere: A comparison of observations at various sites[J]. Geophys. Res. Lett., 1999, 26(3): 307-310.

[8] Kulmala M, Pirjola L, Makela J M. Stable sulphate clusters as a source of new atmospheric particles[J]. Nature, 2000, 404(6773): 66-69.

[9] Harrington D Y, Kreidenweis S M. Simulations of sulfate aerosol dynamics—I: Model description[J]. Atmos. Environ., 1998, 32(10): 1691-1700.

[10] Kulmala M, Laaksonen A, Pirjola L. Parameterizations for sulfuric acid/water nucleation rates[J]. J. Geophys. Res.: Atmos. (1984-2012), 1998, 103(D7): 8301-8307.

[11] Vehkamaki H, Kulmala M, Napari I, et al. An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions[J]. J. Geophys. Res.: Atmos. (1984-2012), 2002, 107(D22): AAC 3-1-AAC 3-10.

[12] Yu F. Updated H2 SO4 -H2 O binary homogeneous nucleation look-up tables[J]. J. Geophys. Res.: Atmos. (1984-2012), 2008, 113(D24): 1-5.

[13] Sipila M, Berndt T, Petaja T, et al. The role of sulfuric acid in atmospheric nucleation[J]. Science, 2010, 327(5970): 1243-1246.

[14] Hoppel W, Frick G, Fitzgerald J, et al. Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have on aerosol size distribution[J]. J. Geophys. Res.: Atmos. (1984-2012), 1994, 99(D7): 14443-14459.

[15] Clarke A, Davis D, Kapustin V, et al. Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources[J]. Science, 1998, 282(5386): 89-92.

[16] O’Dowd C, McFiggans G, Creasey D J, et al. On the photochemical production of new particles in the coastal boundary layer[J]. Geophys. Res. Lett., 1999, 26(12): 1707-1710.

[17] Weber R J, McMurry P H, Mauldin L, et al. A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1[J]. J. Geophys. Res.: Atmos. (1984-2012), 1998, 103(D13): 16385-16396.

[18] Ball S, Hanson D, Eisele F, et al. Laboratory studies of particle nucleation: Initial results for H2 SO4 , H2 O, and NH3 vapors[J]. J. Geophys. Res.: Atmos. (1984-2012), 1999, 104(D19): 23709-23718.

[19] Merikanto J, Napari I, Vehkamaki H, et al. New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions[J]. J. Geophys. Res.: Atmos. (1984-2012), 2007, 112(D15): 1-9.

[20] Turco R P, Zhao J X, Yu F. A new source of tropospheric aerosols: Ion-ion recombination[J]. Geophys. Res. Lett., 1998, 25(5): 635-638.

[21] Wilson C T R. The Effect of Rontgen’s Rays on Cloudy Condensation[J]. Proc. R. So. London, 1895, 59(353-358): 338-339.

[22] Wilson C T R. On the condensation nuclei produced in gases by the action of Rontgen rays, Uranium rays, Ultra-violet light, and other agents[J]. Philos. Trans. R. Soc. London Ser. A, Containing Papers of a Mathematical or Physical Character, 1899: 403-453.

[23] Megaw W, Wiffen R. The generation of condensation nuclei by ionising radiation[J]. Pure Appl. Geophys., 1961, 50(1):118-128.

[24] Bricard J, Billard F, Madelaine G. Formation and evolution of nuclei of condensation that appear in air initially free of aerosols[J]. J. Geophys. Res., 1968, 73(14): 4487-4496.

[25] Vohra K, Ramu M S, Muraleedharan T. An experimental study of the role of radon and its daughter products in the conversion of sulphur dioxide into aerosol particles in the atmosphere[J]. Atmos. Environ.(1967), 1984, 18(8): 1653-1656.

[26] Raes F, Janssens A, Eggermont G. A synergism between ultraviolet and gamma radiation in producing aerosol particles from SO2 -H2 SO4 laden atmospheres[J]. Atmos. Environ. (1967), 1985, 19(7): 1069-1073.

[27] Rabeony H, Mirabel P. Experimental study of vapor nucleation on ions[J]. J. Phys. Chem., 1987, 91(7): 1815-1818.

[28] Adachi M, Okuyama K, Seinfeld J H. Experimental studies of ion-induced nucleation[J]. J. Aerosol Sci., 1992, 23(4): 327-337.

[29] Kim T O, Adachi M, Okuyama K, et al. Experimental measurement of competitive ion-induced and binary homogeneous nucleation in SO2 /H2 O/N2 mixtures[J]. Aerosol Sci. Technol., 1997, 26(6): 527-543.

[30] Kim C S, Adachi M, Okuyama K, et al. Effect of NO2 on particle formation in SO2 /H2 O/Air mixtures by ion-induced and homogeneous nucleation[J]. Aerosol Sci. Technol., 2002, 36(9): 941-952.

[31] Eichkorn S, Wilhelm S, Aufmhoff H, et al. Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere[J]. Geophys. Res. Lett., 2002, 29(14): 43-1-43-4.

[32] Laakso L, Anttila T, Lehtinen K E, et al. Kinetic nucleation and ions in boreal forest particle formation events[J]. Atmos. Chem. Phys., 2004, 4(9/10): 2353-2366.

[33] Laakso L, Petaja T, Lehtinen K,et al. Ion production rate in a boreal forest based on ion, particle and radiation measurements[J]. Atmos. Chem. Phys., 2004, 4(7):1933-1943.

[34] Iida K, Stolzenburg M, McMurry P, et al. Contribution of ion-induced nucleation to new particle formation: Methodology and its application to atmospheric observations in Boulder, Colorado[J]. J. Geophys. Res.: Atmos. (1984-2012), 2006, 111(D23): 1-16.

[35] Laakso L, Gagne S, Petaja T, et al. Detecting charging state of ultra-fine particles: instrumental development and ambient measurements[J]. Atmos. Chem. Phys., 2007, 7(5): 1333-1345.

[36] Kulmala M, Riipinen I, Sipila M, et al. Toward direct measurement of atmospheric nucleation[J]. Science, 2007, 318(5847): 89-92.

[37] Li Q, Jiang J, Hao J. A review of aerosol nanoparticle formation from ions[J]. KONA Powder Part. J., 2015, 32: 57-74.

[38] Beringer J, Arguin J, Barnett R, et al. Review of particle physics[J]. Phys. Rev. D, 2012, 86(1): 368-380.

[39] Luts A, Salm J. Chemical composition of small atmospheric ions near the ground[J]. J. Geophys. Res.: Atmos. (1984-2012), 1994, 99(D5): 10781-10785.

[40] Beig G, Brasseur G P. Model of tropospheric ion composition: A first attempt[J]. J. Geophys. Res.: Atmos. (1984-2012), 2000, 105(D18): 22671-22684.

[41] Harrison R G, Tammet H. Ions in the terrestrial atmosphere and other solar system atmospheres[J]. Space Sci. Rev., 2008, 137(1-4): 107-118.

[42] Rosen J M, Hofmann D J. Balloon-borne measurements of electrical conductivity, mobility, and the recombination coefficient[J]. J. Geophys. Res.: Oceans (1978-2012), 1981, 86(C8): 7406-7410.

[43] McMurry P H, Fink M, Sakurai H, et al. A criterion for new particle formation in the sulfur-rich Atlanta atmosphere[J]. J. Geophys. Res.: Atmos. (1984-2012), 2005, 110(D22): 1-10.

[44] Kuang C, Riipinen I, Sihto S-L, et al. An improved criterion for new particle formation in diverse atmospheric environments[J]. Atmos. Chem. Phys., 2010, 10(17): 8469-8480.

[45] Arnold F. Atmospheric Ions and Aerosol Formation[A]. // Leblanc F, et al. Planetary Atmospheric Electricity[M]. New York: Springer, 2008: 225-239.

[46] Harrison R, Carslaw K. Ion-aerosol-cloud processes in the lower atmosphere[J]. Rev. Geophys., 2003, 41(3): 1-26.

[47] Kulmala M. How particles nucleate and grow[J]. Science, 2003, 302(5647): 1000-1001.

[48] Yu F. From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model[J]. Atmos. Chem. Phys., 2006, 6(12): 5193-5211.

[49] Curtius J, Lovejoy E R, Froyd K D. Atmospheric ion-induced aerosol nucleation[J]. Space Sci. Rev., 2006, 125(1-4): 159-167.

[50] Kanawade V, Tripathi S. Evidence for the role of ion-induced particle formation during an atmospheric nucleation event observed in Tropospheric Ozone Production about the Spring Equinox (TOPSE)[J]. J. Geophys. Res.: Atmos. (1984-2012), 2006, 111(D2): 1-11.

[51] 顾学军, 胡长进, 盖艳波, 等. 二氧化硫/水/空气体系气溶胶成核实验研究[J]. 中国环境科学, 2015, 35(3): 700-705.

    Gu Xuejun, Hu Changjin, Gai Yanbo, et al. Experimental evaluation of aerosol formation in SO2 /H2 O/Air mixtures[J]. China Environmental Science., 2015, 35(3): 700-705(in Chinese).

[52] Nadykto A B, Yu F. Strong hydrogen bonding between atmospheric nucleation precursors and common organics[J]. Chem. Phys. Lett., 2007, 435(1): 14-18.

[53] Nieminen T, Manninen H, Sihto S-L, et al. Connection of sulfuric acid to atmospheric nucleation in boreal forest[J]. Environ. Sci. Technol., 2009, 43(13): 4715-4721.

[54] Zhao J, Khalizov A, Zhang R, et al. Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors[J]. J. Phys. Chem. A, 2009, 113(4): 680-689.

[55] Zhang R. Getting to the critical nucleus of aerosol formation[J]. Science, 2010, 328(5984): 1366-1367.

[56] Horrak U, Salm J, Tammet H. Statistical characterization of air ion mobility spectra at Tahkuse Observatory: Classification of air ions[J]. J. Geophys. Res.: Atmos. (1984-2012), 2000, 105(D7): 9291-9302.

[57] Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol[J]. Nature, 2014, 506(7489): 476-9.

[58] Ayers G, Gillett R, Gras J. On the vapor pressure of sulfuric acid[J]. Geophys. Res. Lett., 1980, 7(6): 433-436.

[59] Zhang R, Wooldridge P J, Abbatt J P, et al. Physical chemistry of the sulfuric acid/water binary system at low temperatures: stratospheric implications[J]. J. Phys. Chem., 1993, 97(28): 7351-7358.

[60] Marti J J, Jefferson A, Cai X P, et al. H2 SO4 vapor pressure of sulfuric acid and ammonium sulfate solutions[J]. J. Geophys. Res.: Atmos. (1984-2012), 1997, 102(D3): 3725-3735.

[61] Castleman A, Bowen K. Clusters: Structure, energetics, and dynamics of intermediate states of matter[J]. J. Phys. Chem., 1996, 100(31): 12911-12944.

[62] Molina M J, Molina L T, Kolb C E. Gas-phase and heterogeneous chemical kinetics of the troposphere and stratosphere[J]. Annu. Rev. Phys. Chem., 1996, 47(1): 327-367.

[63] Davidovits P, Kolb C E, Williams L R, et al. Mass accommodation and chemical reactions at gas-liquid interfaces[J]. Chem. Rev., 2006, 106(4): 1323-1354.

[64] Yue D, Hu M, Zhang R, et al. Potential contribution of new particle formation to cloud condensation nuclei in Beijing[J]. Atmos. Environ., 2011, 45(33): 6070-6077.

[65] Carslaw K, Harrison R, Kirkby J. Cosmic rays, clouds, and climate[J]. Science, 2002, 298(5599): 1732-1737.

[66] Kirkby J. Cosmic rays and climate[J]. Surv. Geophys., 2007, 28(5-6): 333-375.

[67] Bazilevskaya G, Usoskin I, Flückiger E, et al. Cosmic ray induced ion production in the atmosphere[J]. Space Sci. Rev., 2008, 137(1-4): 149-173.

[68] Williams E, Mareev E. Recent progress on the global electrical circuit[J]. Atmos. Res., 2014, 135: 208-227.

[69] Nicoll K, Harrison R. Experimental determination of layer cloud edge charging from cosmic ray ionisation[J]. Geophys. Res. Lett., 2010, 37(13): 1-5.

[70] Harrison R G, Ambaum M H, Lockwood M. Cloud base height and cosmic rays[C] //Ed. by Andrew Dunn. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 2011: 1-15.

[71] Rycroft M J, Harrison R G. Electromagnetic atmosphere-plasma coupling: The global atmospheric electric circuit[J]. Space Sci. Rev., 2012, 168(1-4): 363-384.

[72] Bennett A, Harrison R. Lightning-induced extensive charge sheets provide long range electrostatic thunderstorm detection[J]. Phys. Rev. Lett., 2013, 111(4): 045003.

[73] Dickinson R E. Solar variability and the lower atmosphere[J]. Bull. Am. Meteorol. Soc., 1975, 56(12):1240-1248.

[74] Svensmark H, Friis-Christensen E. Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships[J]. J. Atmos. Solar-Terrestrial Phys., 1997, 59(11):1225-1232.

[75] Marsh N D, Svensmark H. Low cloud properties influenced by cosmic rays[J]. Phys. Rev. Lett., 2000, 85(23): 5004.

[76] Kazil J, Lovejoy E. A Parameterization of Neutral and Ion-Induced Water/Sulfuric Acid Aerosol Nucleation Rates for Use in Atmospheric Modeling[C] //AGU Fall Meeting Abstracts. 2005: 151.

[77] Svensmark H, Pedersen J O P, Marsh N D, et al. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions[C] //Ed. by Andrew Dunn. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 2007: 385-396.

[78] Winkler P M, Steiner G, Vrtala A, et al. Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles[J]. Science, 2008, 319(5868): 1374-1377.

[79] Kirkby J, Curtius J, Almeida J, et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation[J]. Nature, 2011, 476(7361): 429-433.

[80] Wilhelm S, Eichkorn S, Wiedner D, et al. Ion-induced aerosol formation: new insights from laboratory measurements of mixed cluster ions HSO4 (H2 SO4 )a (H2 O)w and H + (H2 SO4 )a (H2 O)w [J]. Atmos. Environ., 2004, 38(12): 1735-1744.

[81] Nagato K. Charged particle formation by the ionization of air containing sulfur dioxide[J]. Int. J. Mass Spectr., 2009, 285(1): 12-18.

温作赢, 顾学军, 荣华, 朱宇鹏, 唐小锋, 盖艳波, 胡长进, 赵卫雄, 张为俊. 离子诱导气溶胶成核过程的研究[J]. 大气与环境光学学报, 2016, 11(2): 81. WEN Zuoying, GU Xuejun, RONG Hua, ZHU Yupeng, TANG Xiaofeng, GAI Yanbo, HU Changjin, ZHAO Weixiong, ZHANG Weijun. Study of the Process of Aerosol Particle Formation by Ion-Induced Nucleation[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(2): 81.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!