红外与激光工程, 2018, 47 (11): 1117003, 网络出版: 2019-01-10  

航天大视场遥感相机畸变测试方法

Testing method of distortion for space remote sensing camera with large field of view
作者单位
北京空间机电研究所 先进光学遥感技术北京市重点实验室, 北京 100094
摘要
航天遥感相机的畸变作为相机的重要参数, 其测试精度直接关系到相机获取图像后的图像处理精度。对于航天非测绘遥感相机, 在设计之初往往对其光学系统的畸变设计要求没有测绘相机高, 其光学系统的畸变一般会比较大, 需要对此类遥感相机, 特别是视场较大的遥感相机的畸变进行精确测试, 为其在轨飞行检校提供比较精确的初始条件。文中在经典的精密测角方法的基础上, 建立了针对大畸变航天遥感相机的数学模型, 针对视场较大、弧形畸变较大的测试难点提出了合理可行的测试思路, 完成了被测相机的高精度畸变测试, 取得了理想的效果。实际测试结果表明: 畸变测试精度优于1.8 μm(1σ), 可以满足被测相机的高精度畸变测试需求, 对航天非测绘大视场遥感相机畸变测试有参考借鉴意义。
Abstract
The distortion of the space remote sensing camera was an important parameter, the test accuracy of which was directly related to the image processing precision after getting the image. For the space non-mapping remote sensing camera, the requirement for the distortion of the optical system was not as high as mapping remote sensing camera at the beginning of the design. So its distortion of the optical system was large in general. For this kind of remote sensing camera, especially those with large FOV, it′s necessary to test distortion of the camera accurately. This can provide more accurate initial condition for the calibration in-orbit. Based on the precision of angle measuring method, the mathematical model of space remote sensing camera in view of the large distortion was established in this paper, and a reasonable and feasible test idea was proposed for the large FOV and arc distortion of the camera. The high accuracy test to the distortion of the under test camera was completed, and the results were ideal. The practical test results show that the accurate of distortion is better than 1.8 μm(1σ). The test accuracy can meet the high requirements of test precision for under test camera. So this method has reference significance to the distortion test of the space non-mapping remote sensing camera.
参考文献

[1] 李德仁. 我国第一颗民用三线阵立体测图卫星--资源三号测绘卫星[J]. 测绘学报, 2012, 41(3): 317-322.

    Li Deren. China′s first civilian three-line-array stereo mapping satellite: ZY-3[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 317-322. (in Chinese)

[2] 刘姜伟, 黄海乐, 李五. 天绘一号卫星高分辨、多光谱相机与三线阵正视相机夹角在轨标定方法研究[J]. 红外与激光工程, 2015, 44(2): 662-667.

    Liu Jiangwei, Huang Haile, Li Wu. Research on method for the in-flight calibration of Mapping Satellite-1 high-resolution camera, multispectral camera and three-line-array nadir camera′s intersection angle[J]. Infrared and Laser Engineering, 2015, 44(2): 662-667. (in Chinese)

[3] 余达, 刘金国, 周怀得, 等. LMCCD立体测绘成像设计[J].红外与激光工程, 2015, 44(11): 3393-3396.

    Yu Da, Liu Jinguo, Zhou Huaide, et al. Design of LMCCD stereo mapping imaging[J]. Infrared and Laser Engineering, 2015, 44(11): 3393-3396. (in Chinese)

[4] Ohlhof T, Kornus W. Geometric calibration of digital three-line CCD cameras[C]//International Archives of Photogrammetry and Remote sensing, Como, Italy, 1994, 30: 71-81.

[5] Pacey R E, Walker A S, Scheldt M. Calibration of analog and digital airborne sensors at LH systems[C]//ASPRS Annual Conference, 1999: 950-956.

[6] Schuster R. Sensor calibration and geometric calibration of a three line stereo camera[C]//International Archives of Photogrammetry and Remote Sensing, 1994, 30: 265-271.

[7] 张继友. 传输型立体测绘相机几何精度仿真分析[J].航天返回与遥感, 2012, 33(3): 48-54.

    Zhang Jiyou. Simulation of geometric measurement method for stereo mapping camera[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(3): 48-54. (in Chinese)

[8] 吴国栋, 韩冰, 何煦. 精密测角法的线阵CCD相机几何参数实验室标定方法[J]. 光学 精密工程, 2007, 15(10): 1628-1632.

    Wu Guodong, Han Bing, He Xu. Calibration of geometric parameters of line-array CCD camera based on exact measuring angle in lab[J]. Optics and Precision Engineering, 2007, 15(10): 1628-1632. (in Chinese)

[9] 张继友, 王东杰, 马丽娜. 摄像机内方位元素标定中的自标定技术[J]. 影像科学与光化学, 2016, 34(1): 15-22.

    Zhang Jiyou, Wang Dongjie, Ma Lina. The self-calibration technology of camera intrinsic parameters calibration methods[J]. Imaging Science and Photochemistry, 2016, 34(1): 15-22. (in Chinese)

[10] 刘峰, 王向军, 许薇,等. 并联跟踪台单目视觉自标定方法[J]. 红外与激光工程, 2009, 38(1): 175-179.

    Liu Feng, Wang Xiangjun, Xu Wei, et al. Self-calibration method for the parallel tracking platform based on the monocular vision [J]. Infrared and Laser Engineering, 2009, 38(1): 175-179. (in Chinese)

[11] 岳涛, 李博, 陈晓丽, 等. 空间光学发展现状和未来发展[J]. 航天返回与遥感, 2011, 32(5): 1-9.

    Yue Tao, Li Bo, Chen Xiaoli, et al. The current and future development of space optics[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(5): 1-9. (in Chinese)

[12] 伏瑞敏, 张元明, 张继友. 传输型线阵测绘相机几何精度标定方法[J]. 航天返回与遥感, 2011, 32(6): 62-67.

    Fu Ruimin, Zhang Yuanming, Zhang Jiyou. Study on geometric measurement methods for line-array stereo mapping camera[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(6): 62-67. (in Chinese)

[13] 车驰骋, 李英才, 樊学武, 等. 离轴二镜平行光管的光学设计[J]. 光子学报, 2008, 37(9): 1793-1796.

    Che Chicheng, Li Yingcai, Fan Xuewu, et al. Optical design of the parallel optical tube of the axial mirror[J]. Acta Photonic Sinica, 2008, 37(9): 1793-1796. (in Chinese)

[14] 陈志凌. 用于畸变标定的大视场平行光管的研制[J]. 光学仪器, 2010, 32(1): 71-74.

    Chen Zhiling. Manufacture of wide view collimator for distortion calibration[J]. Optical Instruments, 2010, 32(1): 71-74. (in Chinese)

[15] 郭疆, 刘金国, 王国良, 等. 测绘用离轴三反光学系统技术[J]. 遥感学报, 2012, 16(S): 17-21.

    Guo Jiang, Liu Jinguo, Wang Guoliang, et al. Technology of off-axis TMA aerospace mapping camera[J]. Journal of Remote Sensing, 2012, 16(S): 17-21. (in Chinese)

[16] 吴旭, 范天泉, 罗名容, 等. 超广角光学镜头畸变的约束最小二乘优化[J]. 光电工程, 2004, 31(1): 26-31.

    Wu Xu, Fan Tianquan, Luo Mingrong, et al. Constraint least square optimization for distortion of an ultra-wide-angle optical lens[J]. Opto-Electronic Engineering, 2004, 31(1): 26-31. (in Chinese)

李重阳, 董欣, 岳丽清, 马丽娜, 张继友. 航天大视场遥感相机畸变测试方法[J]. 红外与激光工程, 2018, 47(11): 1117003. Li Chongyang, Dong Xin, Yue Liqing, Ma Lina, Zhang Jiyou. Testing method of distortion for space remote sensing camera with large field of view[J]. Infrared and Laser Engineering, 2018, 47(11): 1117003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!