光子学报, 2012, 41 (3): 271, 网络出版: 2012-03-30   

密集波分复用条件下的光轨网络串扰分析与仿真

Crosstalk Analysis and Simulation of the DWDM Based Light-trail Networks
作者单位
浙江工业大学 理学院,杭州 310023
摘要
光轨网络是一种能够利用成熟的光学器件实现带宽灵活分配和信息交换的新型网络.串扰是限制光轨网络的物理层性能及其扩展性的重要因素.本文讨论了典型的光轨网络节点中异频串扰和同频串扰的产生原因,理论分析了两者对光轨网络的物理层传输性能的影响.给出了3种串扰性能的评价方法.以密集波分复用技术为应用背景,分别搭建了器件隔离度为20 dB和30 dB的、具有3个节点5个波长且单波长速率为2.5 Gbps的光轨网络,仿真了串扰在光轨网络中的传播过程,并计算了光轨网络的误码率、功率代价和相对串扰.理论分析和仿真结果表明:光滤波器、解复用器和复用器是光轨网络中串扰产生的关键器件,且提高器件的隔离度等性能对于提高光轨网络的传输性能会有较显著的效果;在密集波分复用条件下,串扰对单波长速率为2.5 Gbps的光轨网络的误码率和功率代价具有显著的影响,从而限制了光轨网络实际可用的节点数目.
Abstract
Light-trail network is a novel optical network which takes advantage of mature optical devices to assign the bandwidth and switch the packets flexibly. Crosstalk is an important factor to restrict the performance at the physical layer as well as the extensibility of the light-trail network. Firstly, the causes of both interband crosstalk and intraband crosstalk in the typical light-trail nodes are discussed. In addition, the influence of the two kind’s crosstalk on the transmission performance at the physical layer is theoretically analyzed. Secondly, three methods to evaluate the crosstalk are introduced. On the basis of DWDM technique, a simulation platform with 3 nodes and 5 wavelengths is built, in which the optical devices are assigned optical depth as 20 dB and 30 dB. And the basic transmission rate of the wavelength is 2.5 Gbps. At last, the propagation process of the crosstalk is traced in the whole light-trail network. And the BER, the power penalty and the relative crosstalk are calculated accordingly. Both analytical and simulation results show that optical filter, demultiplexer and multiplexer are the key optical devices which cause crosstalks. Hence, the transmission performance of light-trail network can be enhanced obviously by improving the depth of the above optical devices. Moreover, both BER and power penalty are observed to be affected deeply by the crosstalk when the basic transmission rate of single wavelength is up to 2.5 Gbps. Therefore, the number of optical node available is limited at the scenario of DWDM.
参考文献

[1] 陈存康,乔耀军,纪越峰. 基于正交频分复用无源光网络的动态带宽分配算法研究[J].光子学报,2011,40(5):684-689.

    CHEN Cun-kang, QIAO Yao-jun, JI Yue-feng. Dynamic bandwidth allocation algorithm for orthogonal frequency division multiplexing access-passive optical network[J]. Acta Photonica Sinica, 2011, 40(5): 684-689.

[2] 周贤伟,吴启武,王建萍,等. 一种高效的ASON安全光路建立协议[J]. 光子学报, 2009,38(8):2071-2076.

    ZHOU Xian-wei, WU Qi-wu, WANG Jian-ping, et al. An efficient eecure lightpath establishment protocol in ASON[J]. Acta Photonica Sinica, 2009, 38(8): 2071-2076.

[3] 陈陶,梁忠诚,徐宁,等. 新颖的微流控电调谐空间光开关.光子学报, 2010,39(5): 797-801.

    CHEN Tao, LIANG Zhong-cheng, XU Ning, et al. Novel space optical switch device of optofluidic[J]. Acta Photonica Sinica, 2010, 39(5): 797-801.

[4] 丁莹,佟首峰,董科研,等. 大气信道对垂直发收模式紫外光散射通信性能影响的仿真[J].光子学报, 2010, 39(10):1851-1856.

    DING Ying, TONG Shou-feng, DONG Ke-yan, et al. Study and simulation of atmospheric UV communication performance with vertical transmitter-receiver[J]. Acta Photonica Sinica, 2010, 39(5): 797-801.

[5] GUMASTE A, CLAMTAC I. Light-trails: a novel conceptual framework for conducting optical communications[C]. Torino: Workshop on High Performance Switching and Routing, IEEE, 2003: 251-256.

[6] GUMASTE A, ZHENG Si-qing. Next-generation optical storage area networks: the light-trails approach[J]. IEEE Communications Magazine, 2005, 43(3): 72-79.

[7] VANDERHORN N A, BALASUBRAMANIAN S, MINA M, et al. Light-trail testbed for IP-centric applications[J]. IEEE Communications Magazine, 2005, 43(8): S5-S10.

[8] GUMASTE A, GHANI N, BAFNA P, et al. DynaSPOT: dynamic services provisioned optical transport test-bed-Achieving multirate multiservice dynamic provisioning using strongly connected light-trail (SLiT) technology[J]. Journal of Lightwave Technology, 2008, 26(1-4): 183-195.

[9] LUO Xu-bin, WANG Bin. On service provisioning using light-trails in WDM optical networks with waveband switching[J]. Photonic Network Communications, 2011, 21(1): 97-105.

[10] ZHANG Wei-yi, KANDAH F, WANG Chong-gang, et al. Dynamic light trail routing in WDM optical networks[J]. Photonic Network Communications, 2011, 21(1): 78-89.

[11] 乐孜纯, 侯继斌, 付明磊, 等. 光轨网络节点结构设计及性能分析[J]. 中国激光, 2010, 37(12): 3037-3043.

    LE Zi-chun, HOU Ji-bin, FU Ming-lei, et al. Design and performance analysis of the node architecture for light-trail network[J]. Chinese Journal of Lasers, 2010, 37(12): 3037-3043.

[12] 马斯瓦米 R,西华拉占 K N. 光网络上卷:光纤通信技术与系统[M]. 乐孜纯, 译. 北京:机械工业出版社,2004: 204-209.

    RAMASWAMI R, SIVARAJAN K N. Optical networks:A pratical perspective[M]. LE Zi-chun, transl. Beijing: China Machine Press, 2004: 204-209.

[13] 赵亮, 唐棣芳. WDM全光网OXC节点串扰效应分析[J]. 光纤与电缆及其应用技术, 2007, 5: 1-5.

    ZHAO Liang, TANG Di-fang. Crosstalk of OXC in WDM-based all-optical network[J]. Optical Fiber & Electric Cable, 2007, 5: 1-5.

[14] 程振杰, 余重秀. WDM网中同频串扰的研究[J]. 光子学报, 2001, 30(1): 22-26.

    CHEN Zhen-jie, YU Chong-xiu. Intraband crosstalk in WDM networks[J]. Acta Photonica Sinica, 2001, 30(1): 22-26.

[15] 冯建和, 纪越峰, 管克俭, 等. WDM光网络非相干串扰实验研究[J]. 通信学报, 2001, 22(5):6-10.

    FENG Jian-he, JI Yue-feng, GUAN Ke-jian, et al. Experimental study of incoherent crosstalk in WDM optical network[J]. Journal of China Institute of Communications, 2001, 22(5): 6-10.

张蕾蕾, 付明磊, 乐孜纯. 密集波分复用条件下的光轨网络串扰分析与仿真[J]. 光子学报, 2012, 41(3): 271. ZHANG Lei-lei, FU Ming-lei, LE Zi-chun. Crosstalk Analysis and Simulation of the DWDM Based Light-trail Networks[J]. ACTA PHOTONICA SINICA, 2012, 41(3): 271.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!