红外与毫米波学报, 2011, 30 (4): 316, 网络出版: 2011-08-18   

不同尺度的微分窗口下土壤有机质的一阶导数光谱响应特征分析

Analysis on derivative spectrum feature for SOM under different scales of differential window
作者单位
1 西北农林科技大学 资源环境学院, 陕西 杨凌712100
2 咸阳师范学院 资源环境系, 陕西 咸阳712000
摘要
使用高光谱仪ASD Field Spec在波长范围400~1000 nm内采集有机质含量不同的土壤反射光谱数据并作对数变换处理; 之后在不同尺度的微分窗口下求取其一阶导数(一阶导数光谱)并进行小波阈值去噪; 从一阶导数光谱中提取特征参数表征有机质含量变化.结果表明, 微分窗口尺度w=1~5时, 土壤一阶导数光谱中含有大量噪声, 对一阶导数光谱曲线形态和有机质吸收特征的识别造成严重干扰; 微分窗口尺度w=6~15时, 土壤一阶导数光谱中的噪声得到一定程度的去除, 但仍无法准确判别有机质的吸收特征; 微分窗口尺度w=16~30时, 土壤一阶导数光谱中的噪声被有效去除, 其中当w=19时, 从一阶导数光谱中提取的特征参数MD19s与土壤有机质含量的相关系数为-0.803.MD19s能够较为准确地指示有机质含量变化, 而且运算简单, 易于实现, 为在精准农业中采用可见/近红外反射光谱分析技术快速检测土壤有机质提供了新的途径.
Abstract
The hyper-spectral reflectance of soil was measured by a ASD FieldSpec within 400~1000 nm, then treated with logarithmic transformation. First derivative of soil spectra with different scales of differential window were acquired and denoised by the threshold denoising method based on wavelet transform. From the first derivative of soil spectra, feature parameters used as indicators for soil organic matter content were extracted. Results show that: (1) When the number of the scale of differential window was set as W=1~5, it is difficult to identify the spectrum contour and response feature in first derivative of soil spectra because of much noise. (2) When W=6~15, noise in first derivative of soil spectra is partly removed, and spectrum contour is identified roughly. However spectral response feature resulted from different organic content levels can not be identified clearly. (3) When W=16~30, noise in first derivative of soil spectrua is removed effectively. The coefficient of correlation between organic matter content and feature parameter MD19s is 0.803. MD19s can be used as one of the best indicators for soil organic matter content.
参考文献

[1] LI Min-Zan, HAN Dong-Hai, WANG Xiu. Spectral analysis technology and its application[M]. Beijing: Science Press(李民赞,韩东海,王秀.光谱分析技术及其应用.北京:科学出版社),2006:115-279.

[2] HE Yong, SONG Hai-Yan, Pereira A G, et al. Measurement and analysis of soil nitrogen and organic matter content using near-infrared spectroscopy techniques[J]. Journal of Zhejiang University SCIENCE,2005,6B(11):1081-1086.

[3] BAO Yi-Dan, HE Yong, FANG Hui, et al. Spectral characterization and N content prediction of soil with different particle size and moisture content[J]. Spectroscopy and Spectral Analysis(鲍一丹,何勇,方惠,等.土壤的光谱特征及氮含量的预测研究.光谱学与光谱分析),2007,27(1):62-65.

[4] HE Ting, WANG Jing, LIN Zong-Jian, et al. Spectral features of soil organic matter[J]. Geo-spatial Information Science,2009,12(1):33-40.

[5] LIU Huan-Jun, ZHANG Bai, LIU Dian-Wei, et al. Study on quantitatively remote sensing typical soils in Songnen plain, northeast China[J]. Journal of Remote Sensing(刘焕军,张柏,刘殿伟,等.松嫩平原典型土壤高光谱定量遥感研究.遥感学报),2008,12(4):647-654.

[6] SHA Jin-Ming, CHEN Peng-Cheng, CHEN Song-Lin. Characteristics analysis of soil spectrum response resulted from organic material[J]. Research of Soil and Water Conservation(沙晋明,陈鹏程,陈松林.土壤有机质光谱响应特性研究.水土保持研究),2003,10(2):21-24.

[7] Ben-Dor E. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400~2500 nm) duing a controlled decompsition process[J]. Romote Sensing of Enviroment,1997,61:1-15.

[8] SONG Hai-Yan, HE Yong. Determination of the phosphorus, kalium contents and pH values in soils using near-infrared spectroscopy[J]. Journal of Shanxi Agricultural University: Netural Science Edition(宋海燕,何勇.近红外光谱法分析土壤中磷、钾含量及pH值的研究.山西农业大学学报:自然科学版),2008,28(3):275-278.

[9] WANG Ji-Hua, ZHAO Chun-Jiang, HUANG Wen-Jiang. Base and application of quantitative remote sensing technique in agriculture[M]. Beijing: Science Press (王纪华,赵春江,黄文江.农业定量遥感基础与应用.北京:科学出版社),2008:156-159.

[10] GONG Cai-Lan, YIN Qiu, KUANG Ding-Bo. Correlations between water quality indexes and reflectance spectra of Huangpujiang river[J]. Journal of Remote Sensing(巩彩兰,尹球,匡定波.黄浦江水质指标与反射光谱特征的关系分析.遥感学报),2006,10(6):910-916.

[11] LI Xin-Zhen, CHE Gang-Ming, FENG Jian-Hu, et al. Computational methods[M]. Xi’an: Northwestern Polytechnical University Press(李信真,车刚明,封建湖,等.计算方法.西安:西北工业大学出版社),2000:172-175.

[12] WAN Yu-Qing, TAN Ke-Long, ZHOU Ri-Ping. Hyperspectral remote sensing and its application[M]. Beijing: Science Press(万余庆,谭克龙,周日平.高光谱遥感应用研究.北京:科学出版社),2006:22-189.

[13] XU Wei-Dong, YIN Qiu, KUANG Ding-bo. Decision tree classification of hyperspectral image based on discrete wavelet transform[J]. Journal of Remote Sensing(许卫东,尹球,匡定波.小波变换在高光谱决策树分类中的应用研究.遥感学报),2006,10(2):204-210.

[14] JIANG Qing-Song, WANG Jian-Yu. Study on signal-to-noise ratio estimtion and compression method of operational modular imaging spectrometer multi-spectral images[J]. Acta Optica Sinica(蒋青松,王建宇.实用型模块化成像光谱仪多光谱图像的信噪比估算及压缩方法研究.光学学报),2003,23(11):1335-1340.

刘炜, 常庆瑞, 郭曼, 邢东兴, 员永生. 不同尺度的微分窗口下土壤有机质的一阶导数光谱响应特征分析[J]. 红外与毫米波学报, 2011, 30(4): 316. LIU Wei, CHANG Qing-Rui, GUO Man, XING Dong-Xing, YUAN Yong-Sheng. Analysis on derivative spectrum feature for SOM under different scales of differential window[J]. Journal of Infrared and Millimeter Waves, 2011, 30(4): 316.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!