红外技术, 2023, 45 (12): 1358, 网络出版: 2024-01-17  

非线性曲线拟合在反射式持续热激励红外热像检测的应用

Nonlinear Data Fitting for Reflective Continuous Heat Excited Thermography Testing
作者单位
1 攀枝花学院公共实验教学中心, 四川攀枝花 617000
2 攀枝花学院钒钛学院, 四川攀枝花 617000
摘要
为了在反射式持续热激励红外热像技术中对缺陷深度进行定量检测, 基于实际情况建立了持续热激励下被检物内的热传导模型, 并求解了被检物热激励面上的温差-时间关系。通过对求解出的温差-时间关系的分析, 发现实际检测时取热激励面温差-时间数据依照所求解出的关系进行非线性曲线拟合, 可测量缺陷的深度。为了检验方法的可行性, 利用风电叶片玻璃钢制作了平底洞试件, 并对平底洞试件进行了检测实验。实验表明, 本文方法对缺陷深度具有较高的测量精度。
Abstract
To quantitatively detect defects using reflective continuous-heat-excited thermography, a heat conduction model of an object under continuous heat excitation was established, and the temperature increment-time relationship on the thermal excitation surface of the object was derived. Based on an analysis of the temperature increment-time relationship on the thermal excitation surface, the depth of the defects could be measured by nonlinear fitting of the temperature increment-time data. To test the feasibility of this method, a GFRP flat-bottomed hole specimen was fabricated and analyzed using reflective continuous-heat-excited thermography. The results show that this method is highly accurate in measuring the depth of defects.
参考文献

[1] 李晓丽. 红外热波定量测量技术的研究及其应用 [D].北京: 北京理工大学, 2018: 1-10 . LI Xiaoli. Studies for Quantitatively Measuring Technique by Using Thermal Wave Imaging and Their Applications[D]. Beijing: Beijing Institute of Technology, 2018: 1-10.

[2] Worzewski T, Krankenhagen R, Doroshtnasir M, et al. Thermographic inspection of a wind turbine rotor blade segment utilizing natural conditions as excitation source, Part I: Solar excitation for detecting deep structures in GFRP[J]. Infrared Phys. Technol., 2016, 76: 756-766.

[3] Kalyanavalli V, Mithun P M, Sastikumar D. Analysis of long-pulse thermography methods for defect depth prediction in transmission mode[J]. Meas. Sci. Technol., 2019, 31: 014002.

[4] Shepard S M, Lhota J R, Rubadeux B A, et al. Reconstruction and enhancement of active thermographic image sequences[J]. Opt. Eng., 2003, 42(5): 1337-1342.

[5] SUN J G. Pulsed thermal imaging measurement of thermal properties for thermal barrier coatings based on a multilayer heat transfer mode[J]. J. Heat Trans., 2014, 136: 081601.

[6] SUN J G . Thermal conductivity measurement for thermal barrier coatings based on one- and two-sided thermal imaging methods[J]. Review of Quantitative Nondestructive Evaluation, 2010, 29: 458-465.

[7] SUN J G. Quantitative three-dimensional imaging by thermal tomography method[J]. Review of Quantitative Nondestructive Evaluation, 2011, 30: 430-437.

[8] LI Xiaoli, TAO Ning, SUN J G, et al. Thickness measurement by two-sided step-heating thermal imaging[J]. Rev. Sci. Instrum., 2018, 89: 104902.

[9] LI Xiaoli, SUN J G, TAO Ning, et al. An effective method to inspect adhesive quality of wind turbine blades using transmission thermography[J]. J. Nondstrct. Eval., 2018, 37(19): 1-11

[10] LI Xiaoli, TAO Ning, SUN Jiangang, et al. Evaluation of an ancient cast-iron Buddha head by step-heating infrared thermography[J]. Infrared Phys. Technol., 2019, 98: 223-229.

[11] 金学元. 持续热激励红外热像无损检测技术的研究及应用 [D].北京: 首都师范大学, 2013: 12-18. JIN Xueyuan. Study on the Application of Non-destructive Testing Technology of Infrared Thermal Image with Continuous Thermal Excitation[D]. Beijing: Capital Normal University, 2013: 12-18.

[12] 李晓丽 , 孙建刚 , 陶宁, 等. 非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数[J].物理学报 , 2017, 66(18): 188702. LI Xiaoli, SUN Jiangang, TAO Ning, et al. Application of nonlinear data fitting method to thermal diffusivity of carbon-carbon composite measured by transmission pulsed thermography[J]. Acta Physica Sinica, 2017, 66(18): 188702.

[13] 曾智, 陶宁, 冯立春, 等. 缺陷尺寸对红外热波技术缺陷深度测量的影响研究[J].红外与激光工程 , 2011, 41(7): 1910-1915. ZENG Z, TAO N, FENG L C, et al. Effect of defect size on the measurement of defect depth using thermal wave imaging[J]. Infrared and Laser Engineering, 2011, 41(7): 1910-1915.

金学元, 陈今良. 非线性曲线拟合在反射式持续热激励红外热像检测的应用[J]. 红外技术, 2023, 45(12): 1358. JIN Xueyuan, CHEN Jinliang. Nonlinear Data Fitting for Reflective Continuous Heat Excited Thermography Testing[J]. Infrared Technology, 2023, 45(12): 1358.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!