激光与光电子学进展, 2008, 45 (4): 50, 网络出版: 2008-04-21   

蛋白酶荧光探针及新型显微成像技术的生物医学应用

Biomedical Applications of Imaging Microscopy Based on Protease-Activated Fluorescent Probe
作者单位
福建师范大学 医学光电教育部重点实验室, 福建 福州 350007
摘要
研究正常生理条件蛋白酶的活化情况仍然存在很多困难,将蛋白酶荧光探针技术和基于各种光学平台的显微成像技术有机地结合起来,可以最大限度地记录活细胞生理条件下蛋白酶活性变化的时空信息。综述了蛋白酶荧光探针技术及其与该类探针应用相关的新型显微成像技术在生物医学光子学领域的应用进展。
Abstract
medical optics; biomedical photonics; protease-activated fluorescent probe; imaging microscopy; living cell
参考文献

[1] . N. Day. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy[J]. Mol. Endocrinol., 1998, 12(9): 1410-1419.

[2] . Elangovan, R. N. Day, Periasamy. Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell[J]. J. Microsc., 2002, 205: 3-14.

[3] . Heim, R. Y. Tsien. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer[J]. Curr. Biol., 1996, 6: 178-182.

[4] . Elangovan, H. Wallrabe, Y. Chen et al.. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy[J]. Methods, 2003, 29: 58-73.

[5] . P. Dantuma, K. Lindsten, R. Glas et al.. Short-lived green fluorescent proteins for quantification of ubiquitin/proteasome-dependent proteolysis in living cells[J]. Nature Biotechnol., 2000, 18(5): 538-543.

[6] . Weissleder, C. H. Tung, U. Mahmood et al.. In vivo imaging of tumors with protease-activated nearinfrared fluorescent probes[J]. Nature Biotechnol., 1999, 17(4): 375-378.

[7] . Markus, D. Heiko, U. Reiner et al.. Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process[J]. ROLE OF CASPASE-3. J. Biol. Chem., 2002, 277(27): 24506-24514.

[8] . Neefjes, N. P. Dantuma. Fluorescent probes for proteolysis: tools for drug discovery[J]. Nature Rev. Drug Discov., 2004, 3: 58-69.

[9] . Ciechanover, P. Brundin. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg[J]. Neuron, 2003, 40: 427-446.

[10] . Hershko, A. Ciechanover. The ubiquitin system[J]. Annu. Rev. Biochem., 1998, 67: 425-479.

[11] . S. Johnson, P. C. Ma, I. M. Ota et al.. A proteolytic pathway that recognizes ubiquitin as a degradation signal[J]. J. Biol. Chem., 1995, 270(29): 17442-17456.

[12] . H. Stack, M. Whitney, S. M. Rodems et al.. A ubiquitin-based tagging system for controlled modulation of protein stability[J]. Nature Biotechnol., 2000, 18: 1298-1302.

[13] T. Gilon, O. Chomsky, R. G. Kulka. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae[J]. EMBO J. 1998, 17(10):2759~2766

[14] . F. Bence, R. M. Sampat, R. R. Kopito. Impairment of the ubiquitin-proteasome system by protein aggregation[J]. Science, 2001, 292(5521): 1552-1555.

[15] . Lindsten, V. Menendez-Benito, M. G. Masucci et al.. A transgenic mouse model of the ubiquitin/proteasome system[J]. Nature Biotechnol., 2003, 21(8): 897-902.

[16] . D. Luker, C. M. Pica, J. Song et al.. Imaging 26S proteasome activity and inhibition in living mice[J]. Nature Med., 2003, 9(7): 969-973.

[17] . Riefke, K. Licha, W. Semmler. Contrast agents for optical mammography[J]. Radiologe, 1997, 37: 749-755.

[18] . Bremer, C. H. Tung, A. Jr. Bogdanov et al.. Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes[J]. Radiology, 2002, 222: 814-818.

[19] . Chen, C. H. Tung, U. Mahmood et al.. In vivo imaging of proteolytic activity in atherosclerosis[J]. Circulation, 2002, 105(23): 2766-2771.

[20] . A. Jares-Erijman, T. M. Jovin. FRET imaging[J]. Nature Biotechnol., 2003, 21(11): 1387-1394.

[21] . Chen, S. H. Zeng, Q. Luo et al.. High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy[J]. Biochem Biophys. Res. Commun., 2002, 291(5): 1272-1275.

[22] . Xiang, L. V. Amy, C. B. Betty et al.. Detection of programmed cell death using fluorescence energy transfer[J]. Nucleic Acids Research, 1998, 26(8): 2034-2035.

[23] . Yang, Z. H. Zhang, J. Lin et al.. Detection of MMP activity in living cells by a genetically encoded surface-displayed FRET sensor[J]. BBA-Molecular Cell Research, 2007, 1773(3): 400-407.

[24] . Kawai, T. Suzuki, T. Kobayashi et al.. Simultaneous real-time detection of initiator-and effector-caspase activation by double fluorescence resonance energy transfer analysis[J]. J. Pharmacol. Sci., 2005, 97(3): 361-368.

[25] . Lin, Z. Zhang, S. Zeng et al.. TRAIL-induced apoptosis proceeding from caspase-2-dependent and -independent pathways in distinct HeLa cells[J]. Biochem. Biophys. Res. Commun., 2006, 11(2): 1136-1141.

[26] . Lin, Z. Zhang, J. Yang et al.. Real-time detection of caspase-2 activation in a single living HeLa cell during cisplatin-induced apoptosis[J]. J. Biomed. Opt., 2006, 11(2): 024011.

[27] . Zhou, J. Lin, W. Du et al.. Characterization of proteinase activation dynamics by capillary electrophoresis conjugating with fluorescent protein-based probe[J]. J. Chromatogr. B, 2006, 844(1): 158-162.

[28] . Zhou, J. Lin, W. Du et al.. Monitoring of proteinase activation in cell apoptosis by capillary electrophoresis with bioengineered fluorescent probe[J]. Anal. Chim. Acta., 2006, 569: 176-181.

[29] . Laxman, D. E. Hall, M. S. Bhojani et al.. Noninvasive real-time. imaging of apoptosis[J]. Proc. Natl. Acad. Sci. USA, 2002, 99(26): 16551-16555.

[30] . B. Sekar, A. Periasamy. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations[J]. J. Cell. Biol., 2003, 160(5): 629-633.

[31] . P. Mahajan, K. Linder, G. Berry et al.. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer[J]. Nature Biotechnol., 1998, 16: 547-552.

[32] . K. Kenworthy, M. Edidin. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 魡 using imaging fluorescence resonance energy transfer[J]. J. Cell. Biol., 1998, 142(1): 69-84.

[33] . W. Gordon, G. Berry, X. H. Liang et al.. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy[J]. Biophys J., 1998, 74(5): 2702-2713.

[34] . Herrick-Davis, B. A. Weaver, E. Grinde et al.. Serotonin 5-HT2c receptor homodimer biogenesis in the endoplasmic reticulum: Real-time visualization with confocal fluorescence resonance energy transfer[J]. J. Biol. Chem., 2006, 281(37): 27109-27116.

[35] . J. LaMorte, A. Zoumi, B. J. Tromberg. Spectroscopic approach for monitoring two-photon excited fluorescence resonance energy transfer from homodimers at the subcellular level[J]. J. Biomed. Opt., 2003, 8(3): 357-361.

[36] . Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism[J]. Opt. Lett., 2006, 31(8): 1091-1093.

[37] . , Zhan Ch.,, Zeng Sh. et al.. Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector[J]. Rev. Sci. Instrum., 2006, 77(4): 046101.

林居强, 陈荣, 蔡长美, 谢树森. 蛋白酶荧光探针及新型显微成像技术的生物医学应用[J]. 激光与光电子学进展, 2008, 45(4): 50. Lin Juqiang, Chen Rong, Cai Changmei, Xie Shusen. Biomedical Applications of Imaging Microscopy Based on Protease-Activated Fluorescent Probe[J]. Laser & Optoelectronics Progress, 2008, 45(4): 50.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!