红外与激光工程, 2017, 46 (7): 0729001, 网络出版: 2017-09-21   

53 cm双筒望远镜高重频空间碎片激光测距系统

53 cm binocular telescope high repetition frequency space debris laser ranging system
作者单位
中国科学院云南天文台, 云南 昆明 650216
摘要
空间碎片的存在对在轨运行航天器的安全构成严重的威胁, 同时空间碎片的不断产生对有限的轨道资源也将构成严重威胁。采用激光测距技术可实现空间碎片的实时高精度定轨, 从而可有效规避其对航天器的撞击。为了开展高精度小尺寸空间碎片激光测距, 研制了可快速平稳跟踪400 km以上空间目标的53 cm双筒望远镜, 然后结合低功率高重频亚纳秒激光器和单光子探测技术, 在该望远镜上研究和实现了空间碎片激光测距技术。结合激光测距方程, 分析研究系统的空间碎片探测能力, 当碎片距离为1 000 km时, 能探测到回波光子的碎片最小尺寸约为478.5 cm。实际观测表明: 该激光测距系统具有探测米级空间碎片(约1 000 km远)的能力。
Abstract
The existence of space debris has been causing great threats to the security of spacecraft in orbit. Space debris will occupy the limited and precious orbit capacities, so more and more debris generated in the space will also be a huge threat. The real-time high precision orbit determination of debris based on laser ranging technology can effectively avoid the collision between the debris and the spacecraft. In order to make high precision laser ranging to small size space debris, the 53 cm diameter binocular was developed here, which was capable of fast and steady tracking space targets of 400 km above the ground. Combined with low-power high-repetition-rate sub-nanosecond laser generator and single photon detecting technology, the space debris laser ranging technique was implemented on this binocular telescope. According to the laser ranging formulas, the detecting capability of this space debris laser ranging system was researched and analyzed. When the space debris was 1 000 km away from the ground station, the minimum size of the echo photon which can be detected is about 478.5 cm. This space debris laser ranging system has been putting into observation, and the practical observation results indicate this system has the capability to detect meter level debris in ca. 1 000 km distance.
参考文献

[1] 都亨, 刘静. 载人航天和空间碎片[J]. 中国航天, 2002(2):18-23.

    Du Heng, Liu Jing. Manned spaceflight and space debris[J]. Aerospace China, 2002(2): 18-23.

[2] 刘静, 王荣兰, 张宏博, 等. 空间碎片碰撞预警研究[J]. 空间科学学报, 2004, 24(6): 462-469.

    Liu Jing, Wang Ronglan, Zhang Hongbo, et al. Space debris collision prediction research[J]. Chinses Journal of Space Science, 2004, 24(6): 462-469. (in Chinese)

[3] 李语强, 李祝莲, 伏红林,等. 空间碎片漫反射激光测距试验[J]. 中国激光, 2011, 38(9):154-158.

    Li Yuqiang, Li Zhulian, Fu Honglin, et al. The experimentation of diffuse reflection laser ranging of space debris[J]. Chinese Journal of Lasers, 2011, 38(9): 154-158. (in Chinese)

[4] 李振伟, 张涛, 孙明国. 星空背景下空间目标的快速识别与精密定位[J]. 光学 精密工程, 2015, 23(2): 589-599.

    Li Zhenwei, Zhang Tao, Sun Mingguo. Fast recognition and precise orientation of space objects in star background[J]. Optics and Precision Engineering, 2015, 23(2): 589-599. (in Chinese)

[5] 叶叔华, 黄珹. 天文地球动力学[M]. 济南: 山东科学技术出版社, 2000: 91-118.

    Ye Shuhua, Huang Cheng. Astrogeodynamics[M]. Jinan: Shandong Science and Technology Publishing House, 2000: 91-118. (in Chinese)

[6] 纪荣祎, 赵长明, 任学成. 高精度高重频脉冲激光测距系统[J]. 红外与激光工程, 2011, 40(8): 1461-1464.

    Ji Rongyi, Zhao Changming, Ren Xuecheng. High precision and high frequency pulse laser ranging system[J]. Infrared and Laser Engineering, 2011, 40(8): 1461-1464. (in Chinese)

[7] 张忠萍, 张海峰, 吴志波, 等. 基于200 Hz重复率高功率全固态激光器空间碎片激光测距试验[J]. 中国激光, 2014, 41(s1): 108005.

    Zhang Zhongping, Zhang Haifeng, Wu Zhibo, et al. Experiment of laser ranging to space debris based on high power solid-state laser system at 200 HZ repetition rate[J]. Chinses Journal of Lasers, 2014, 41(s1): 108005. (in Chinese)

[8] Dai W, Song Y, Xu B, et al. High-power sub-picosecond all-fiber laser source at 1.56 μm[J]. Chinese Optics Letters, 2014, 12(11): 53-55.

[9] 李语强, 李荣旺, 李祝莲,等. 空间碎片激光测距应用研究[J]. 红外与激光工程, 2015, 44(11): 3324-3329.

    Li Yuqiang, Li Rongwang, Li Zhulian, et al. Application research on space debris laser ranging[J]. Infrared and Laser Engineering, 2015, 44(11): 3324-3329. (in Chinese)

[10] Kirchner G, Koidl F, Friederich F, et al. Laser measurements to space debris from Graz SLR station[J]. Advances in Space Research, 2013, 51(1): 21-24.

[11] 李彬, 桑吉章, 宁津生. 空间碎片半解析法轨道预报精度性能分析[J]. 红外与激光工程, 2015, 44(11): 3310-3316.

    Li Bin, Sang Jizhang, Ning Jinsheng. Analysis of accuracy in orbit predictions for space debris using semianalytic theory[J]. Infrared and Laser Engineering, 2015, 44(11): 3310-3316. (in Chinese)

[12] 王槐, 代霜, 张景旭. 大型地平式望远镜的方位轴系支撑结构[J]. 光学 精密工程, 2012, 20(7): 1509-1516.

    Wang Huai, Dai Shuang, Zhang Jingxu. Azimuth shafting bearing structure in a large Alt-azimuth telescope[J]. Optics and Precision Engineering, 2012, 20(7): 1509-1516. (in Chinese)

[13] 黄涛, 李祝莲, 张海涛,等. 53 cm双筒激光测距望远镜控制系统的设计与实现[J]. 现代电子技术, 2014, 37(16): 1-7.

    Huang Tao, Li Zhulian, Zhang Haitao, et al. Design and implementation for control system of 53 cm binocular laser ranging telescope[J]. Modern Electronics Technique, 2014, 37(16): 1-7. (in Chinese)

[14] John J Degnan. Theoretical performance of NASA′s SGSLR system ranging to GNSS Satellites[C]// Sigma Space Corporation ILRS Technical Workshop, 2015: 26-30.

[15] Zhou P, Liu Z, Xu X, et al. Influence of turbulent atmosphere on the far-field coherent combined beam quality[J]. Chinese Optics Letters, 2008, 6(9): 625-627.

李祝莲, 张海涛, 李语强, 伏红林, 翟东升. 53 cm双筒望远镜高重频空间碎片激光测距系统[J]. 红外与激光工程, 2017, 46(7): 0729001. Li Zhulian, Zhang Haitao, Li Yuqiang, Fu Honglin, Zhai Dongsheng. 53 cm binocular telescope high repetition frequency space debris laser ranging system[J]. Infrared and Laser Engineering, 2017, 46(7): 0729001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!