光电工程, 2019, 46 (3): 1, 网络出版: 2019-04-07  

面向体全息存储技术的光致聚合物材料研究进展

A review of photopolymers on holography volume data storage
作者单位
北京工业大学应用数理学院信息光电子技术研究所,北京 100124
摘要
体全息存储技术具有存储密度高、数据容量大、可并行读写、传输速度快等特点,有望解决目前大数据时代面临的数据存储成本高、存储密度小等难题。由于光致聚合物材料的体全息存储器件具有成本低,重量轻,商用价值高等优点,从上世纪90年代光致聚合物材料在体全息存储领域开始受到了广泛关注,成为体全息存储技术中最具有潜力的记录材料。本文从光致聚合物国内外研究进展出发,介绍了光致聚合物在体全息存储技术中体现出的高感光灵敏度、高衍射效率、高分辨率等优良性能。
Abstract
Volume holographic storage technology has the advantages of high storage density, huge data capacity, parallel read and write, fast transmission speed and so forth. In Big Data era, this method has great potential to meet its needs of low cost and low storage density. Holographic storage devices fabricated by photopolymer materials have attracted wide attention because of its several advantages, such as low cost, light weight, and high commercial value. The excellent performance of photopolymer applied on volume holographic storage is introduced in this paper.
参考文献

[1] 青川. 光存储应对冷数据挑战[J]. 网络运维与管理, 2016(2): 71

    Qing C. Optical storage meets the challenge of cold data storage[J]. IT Operation and Maintenance, 2016(2): 71.

[2] 李建华, 刘金鹏, 林枭, 等. 体全息存储研究现状及发展趋势[J]. 中国激光, 2017, 44(10): 100001.

    Li J H, Liu J P, Lin X, et al. Volume holographic data storage[J]. Chinese Journal of Lasers, 2017, 44(10): 100001.

[3] 谭小地. 大数据时代的光存储技术[J]. 红外与激光工程, 2016, 45(9): 0935001.

    Tan X D. Optical data storage technologies for big data era[J]. Infrared and Laser Engineering, 2016, 45(9): 0935001.

[4] Haw M. Holographic data storage: the light fantastic[J]. Nature, 2003, 422(6932): 556–558.

[5] 陶世荃, 江竹青, 万玉红, 等. 光学体全息技术及应用[M]. 北京: 科学出版社, 2013.

[6] Chen G N, Ni M L, Peng H Y, et al. Photoinitiation and inhibition under monochromatic green light for storage of colored 3D images in holographic polymer-dispersed liquid crystals[J]. ACS Applied Materials and Interfaces, 2017, 9(2): 1810–1819.

[7] Zhao Y, Zhong J, Ye Y, Luo Z X, et al. Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording[J]. Materials Letters, 2015, 138(1): 284–286.

[8] Li C M Y, Cao L C, Wang Z, et al. Hybrid polarization-angle multiplexing volume holography in gold nanoparticle-doped photopolymer[J]. Optics Letters, 2014, 39(24): 6891–6894.

[9] Campbell M, Sharp D N, Harrison M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 2000, 404(6773): 53–56.

[10] Ye C F, Kamysiak K T, Sullivan A C, et al. Mode profile imaging and loss measurement for uniform and tapered single-mode 3D waveguides in diffusive photopolymer[J]. Optics Express, 2012, 20(6): 6575–6583.

[11] 禚渡华, 陶世荃, 施盟泉, 等. 全息记录材料光致聚合物的收缩率[J]. 中国激光, 2007, 34(11): 1543–1547.

    Zhuo D H, Tao S Q, Shi M Q, et al. Shrinkage of photopolymer for holographic recording materials[J]. Chinese Journal of Lasers, 2007, 34(11): 1543–1547.

[12] Jeudy M J, Robillard J J. Spectral photosensitization of a variable index material for recording phase holograms with high efficiency[J]. Optics Communications, 1975, 13(1): 25–28.

[13] Lawrence J R, O’Neill F T, Sheridan J T. Adjusted intensity nonlocal diffusion model of photopolymer grating formation[J]. Journal of the Optical Society of America B, 2002, 19(4): 621–629.

[14] Gleeson M R, Kelly J V, Sabol D, et al. Modeling the photochemical effects present during holographic grating formation in photopolymer materials[J]. Journal of Applied Physics, 2007, 102(2): 023108.

[15] Gleeson M R, Sabol D, Liu S, et al. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length[J]. Journal of the Optical Society of America B, 2008, 25(3): 396–406.

[16] Guo J X, Gleeson M R, Liu S, et al. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling[J]. Journal of Optics, 2011, 13(9): 095601.

[17] Guo J X, Gleeson M R, Liu S, et al. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results[J]. Journal of Optics, 2011, 13(9): 095602.

[18] Gallego S, Ortu o M F, Neipp C, et al. Improved maximum uniformity and capacity of multiple holograms recorded in absorbent photopolymers[J]. Optics Express, 2007, 15(15): 9308–9319.

[19] Gallego S, Márquez A, Ortu o M, et al. Monomer diffusion in sustainable photopolymers for diffractive optics applications[J]. Optical Materials, 2011, 33(11): 1626–1629.

[20] Steckman G J, Solomatine I, Zhou G, et al. Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory[J]. Optics Letters, 1998, 23(16): 1310–1312.

[21] Fujii R, Guo J X, Klepp J, et al. Nanoparticle polymer composite volume gratings incorporating chain transfer agents for holography and slow-neutron optics[J]. Optics Letters, 2014, 39(12): 3453–3456.

[22] Guo J X, Fujii R, Ono T, et al. Effects of chain-transferring thiol functionalities on the performance of nanoparticle-polymer composite volume gratings[J]. Optics Letters, 2014, 39(23): 6743–6746.

[23] Liu Y, Fan F L, Hong Y F, et al. Volume holographic recording in Irgacure 784-doped PMMA photopolymer[J]. Optics Express, 2017, 25(17): 20654–20662.

[24] Fan F L, Liu Y, Hong Y F, et al. Improving the polarization-holography performance of PQ/PMMA photopolymer by doping with THMFA[J]. Optics Express, 2018, 26(14): 17794–17803.

[25] Liu J P, Horimai H, Lin X, et al. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding[J]. Optics Express, 2018, 26(4): 3828–3838.

[26] Liu P, Chang F W, Zhao Y, et al. Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures[J]. Optics Express, 2018, 26(2): 1072–1082.

[27] Liu P, Zhao Y, Li Z R, et al. Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer[J]. Optics Express, 2018, 26(6): 6993–7004.

[28] Liu P, Wang L L, Zhao Y, et al. Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions[J]. Optical Materials Express, 2018, 8(6): 1441–1453.

[29] Posner T. Beitr ge zur Kenntniss der unges ttigten Verbindungen. II. Ueber die addition von mercaptanen an unges ttigte kohlenwasserstoffe[J] Berichte der deutschen chemischen Gesellschaft, 1905, 38(1): 646–657.

[30] Ashworth F, Burkhardt G N. Effects induced by the phenyl group. Part I. The addition of polar reagents to styrene and the behaviour of the halogenated ethylbenzenes[J]. Journal of the Chemical Society (Resumed), 1928: 1791–1802.

[31] Kolb H C, Finn M G, Sharpless K B. Click chemistry: diverse chemical function from a few good reactions[J]. Angewandte Chemie International Edition, 2001, 40(11): 2004–2021.

[32] Hata E, Mitsube K, Momose K, et al. Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization[J]. Optical Materials Express, 2011, 1(2): 207–222.

[33] Takayama S, Nagaya K, Momose K, et al. Effects of symbol modulation coding on readout fidelity of shift-multiplexed holographic digital data page storage in a photopolymerizable nanoparticle-(thiol-ene)polymer composite film[J]. Applied Optics, 2014, 53(10): B53–B59.

[34] Fukuda Y, Tomita Y. Spatial frequency responses of anisotropic refractive index gratings formed in holographic polymer dispersed liquid Crystals[J]. Materials, 2016, 9(3): 188.

[35] Ye S, Cramer N B, Smith I R, et al. Reaction kinetics and reduced shrinkage stress of thiol-yne-methacrylate and thiol-yne-acrylate ternary systems[J]. Macromolecules, 2011, 44(23): 9084–9090.

[36] Nair D P, Cramer N B, Gaipa J C, et al. Two-stage reactive polymer network forming systems[J]. Advanced Functional Materials, 2012, 22(7): 1502–1510.

[37] Peng H Y, Nair N P, Kowalski B A, et al. High performance graded rainbow holograms via two-stage sequential orthogonal thiol-click chemistry[J]. Macromolecules, 2014, 47(7): 2306–2315.

[38] Suzuki N, Tomita Y. Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%[J]. Applied Optics, 2004, 43(10): 2125–2129.

[39] Goldenberg L M, Sakhno O V, Smirnova T N, et al. Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation[J]. Chemistry of Materials, 2008, 20(14): 4619–4627.

[40] Li C M Y, Cao L C, Li J M, et al. Improvement of volume holographic performance by plasmon-induced holographic absorption grating[J]. Applied Physics Letters, 2013, 102(6): 061108.

[41] Li C M Y, Cao L C, He Q S, et al. Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer[J]. Optics Express, 2014, 22(5): 5017–5028.

[42] Cao L C, Wu S H, Hao J P, et al. Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite[J]. Applied Physics Letters, 2017, 111(14): 141104.

[43] Zhang M H, Zheng J H, Gui K, et al. Electro-optical characteristics of holographic polymer dispersed liquid crystal gratings doped with nanosilver[J]. Applied Optics, 2013, 52(31): 7411–7418.

[44] Xue X Y, Hai F S, Gao L Z, et al. Effect of nanoparticle diameter on the holographic properties of gold nanoparticle dispersed acrylate photopolymer films[J]. Optik, 2013, 124(24): 6987–6990.

[45] Li C L, Li X X, Xue X Y, et al. Holographic properties of Fe3O4 nanoparticle-doped organic-inorganic hybrid photopolymer[J]. Optik, 2014, 125(21): 6509–6512.

[46] Li Y X, Wang C H, Li H L, et al. Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites[J]. Applied Optics, 2015, 54(33): 9799–9802.

[47] Booth B L. Photopolymer material for holography[J]. Applied Optics, 1972, 11(12): 2994–2995.

[48] Waldman D A, Butler C J, Raguin D H. CROP holographic storage media for optical data storage greater than 100 bits/μm2[J]. Proceedings of SPIE, 2003, 5216: 10–25.

[49] Dhar L, Curtis K, Tackitt M, et al. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems[J]. Optics Letters, 1998, 23(21): 1710–1712.

[50] St ckel N, Bruder F K, Askham F R, et al. Advantageous recording media for holographic applications: 8053147[P]. 2011-11-08.

[51] Dhar L. High performance recording media for holographic data storage[C]//Proceedings of the 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Rio Grande, Puerto Rico, 2004: 727–728.

[52] Horimai H, Tan X D, Li J. Collinear holography[J]. Applied Optics, 2005, 44(13): 2575–2579.

[53] Gruenwedel E. GE develops disc to store 100 DVDs, 20 BDS[J]. Home Media Magazine, 2009, 31(18): 17.

[54] Ayres M R, Anderson K, Askham F, et al. Holographic data storage at 2+ Tbit/in2[J]. Proceedings of SPIE, 2015, 9386: 93860G.

[55] Takabayashi M, Okamoto A. Self-referential holography and its applications to data storage and phase-to-intensity conversion[J]. Optics Express, 2013, 21(3): 3669–3681.

[56] Eto T, Takabayashi M, Okamoto A, et al. Numerical simulations on inter-page crosstalk characteristics in three-dimensional shift multiplexed self-referential holographic data storage[J]. Japanese Journal of Applied Physics, 2016, 55(8S3): 08RD01.

[57] Klepp J, Pruner C, Tomita Y, et al. Holographic gratings for slow-neutron optics[J]. Materials, 2012, 5(12): 2788–2815.

[58] Zhang J, Dai H T, Yan C, et al. Lasing properties from dye-doped holographic polymer dispersed liquid crystal confined in two-dimensional cylindrical geometry[J]. Optical Materials Express, 2016, 6(4): 1367–1375.

菅佳玲, 曹琳, 魏夕桥, 郭金鑫, 王大勇, 张新平. 面向体全息存储技术的光致聚合物材料研究进展[J]. 光电工程, 2019, 46(3): 1. Jian Jialing, Cao Lin, Wei Xiqiao, Guo Jinxin*, Wang Dayong, Zhang Xinping. A review of photopolymers on holography volume data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!