光学学报, 2017, 37 (9): 0923001, 网络出版: 2018-09-07   

宽波段纳米超材料太阳能吸收器的设计及其吸收特性 下载: 1294次

Design and Absorption Characteristics of Broadband Nano-Metamaterial Solar Absorber
作者单位
华东交通大学信息工程学院, 江西 南昌 330013
引用该论文

朱路, 王杨, 熊广, 刘媛媛, 岳朝政. 宽波段纳米超材料太阳能吸收器的设计及其吸收特性[J]. 光学学报, 2017, 37(9): 0923001.

Lu Zhu, Yang Wang, Guang Xiong, Yuanyuan Liu, Chaozheng Yue. Design and Absorption Characteristics of Broadband Nano-Metamaterial Solar Absorber[J]. Acta Optica Sinica, 2017, 37(9): 0923001.

参考文献

[1] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

    Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

[2] 韩昊, 武东伟, 刘建军, 等. 一种太赫兹类电磁诱导透明超材料谐振器[J]. 光学学报, 2014, 34(4): 0423003.

    韩昊, 武东伟, 刘建军, 等. 一种太赫兹类电磁诱导透明超材料谐振器[J]. 光学学报, 2014, 34(4): 0423003.

    Han Hao, Wu Dongwei, Liu Jianjun, et al. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 0423003.

    Han Hao, Wu Dongwei, Liu Jianjun, et al. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 0423003.

[3] 赵阳, 何建芳, 杨荣草, 等. 结构渐变的二维表面等离子体光栅光吸收器[J]. 光学学报, 2014, 34(2): 0223005.

    赵阳, 何建芳, 杨荣草, 等. 结构渐变的二维表面等离子体光栅光吸收器[J]. 光学学报, 2014, 34(2): 0223005.

    Zhao Yang, He Jianfang, Yang Rongcao, et al. Two-dimenional surface plasmonic grating optical absorber with gradually varying structure[J]. Acta Optica Sinica, 2014, 34(2): 0223005.

    Zhao Yang, He Jianfang, Yang Rongcao, et al. Two-dimenional surface plasmonic grating optical absorber with gradually varying structure[J]. Acta Optica Sinica, 2014, 34(2): 0223005.

[4] 梁磊霞, 薛文瑞, 杨荣草. 槽深线性渐变的表面等离子光栅光吸收器[J]. 光学学报, 2017, 37(1): 0123002.

    梁磊霞, 薛文瑞, 杨荣草. 槽深线性渐变的表面等离子光栅光吸收器[J]. 光学学报, 2017, 37(1): 0123002.

    Liang Leixia, Xue Wenrui, Yang Ruicao. Optical absorber from surface plasmonic grating with depth-linear-gradient grooves[J]. Acta Optica Sinica, 2017, 37(1): 0123002.

    Liang Leixia, Xue Wenrui, Yang Ruicao. Optical absorber from surface plasmonic grating with depth-linear-gradient grooves[J]. Acta Optica Sinica, 2017, 37(1): 0123002.

[5] 倪波, 陈效双, 张杨, 等. 旋转对称性对红外超材料完美吸收器特性的影响[J]. 红外与毫米波学报, 2014, 33(4): 380-385.

    倪波, 陈效双, 张杨, 等. 旋转对称性对红外超材料完美吸收器特性的影响[J]. 红外与毫米波学报, 2014, 33(4): 380-385.

    Ni Bo, Chen Xiaoshuang, Zhang Yang, et al. Impact of resonator rotational symmetry on infrared metamaterial absorber[J]. Journal of Infrared & Millimeter Waves, 2014, 33(4): 380-385.

    Ni Bo, Chen Xiaoshuang, Zhang Yang, et al. Impact of resonator rotational symmetry on infrared metamaterial absorber[J]. Journal of Infrared & Millimeter Waves, 2014, 33(4): 380-385.

[6] Smith D R, Pendry J B. Homogenization of metamaterials by field averaging[J]. Journal of the Optical Society of America B, 2006, 23(3): 391-403.

    Smith D R, Pendry J B. Homogenization of metamaterials by field averaging[J]. Journal of the Optical Society of America B, 2006, 23(3): 391-403.

[7] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

    Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

[8] Bingham C M, Tao H, Landy N I, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization[J]. Optics Express, 2008, 16(10): 7181-7188.

    Bingham C M, Tao H, Landy N I, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization[J]. Optics Express, 2008, 16(10): 7181-7188.

[9] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器[J]. 物理学报, 2012, 61(5): 058101.

    沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器[J]. 物理学报, 2012, 61(5): 058101.

    Shen Xiaopeng, Cui Tiejun, Ye Jianxiang. Dual band metamaterial absorber in microwave regime[J]. Acta Physica Sinica, 2012, 61(5): 058101.

    Shen Xiaopeng, Cui Tiejun, Ye Jianxiang. Dual band metamaterial absorber in microwave regime[J]. Acta Physica Sinica, 2012, 61(5): 058101.

[10] 马荣坤, 汤月明, 王纪俊, 等. 基于磁表面等离子体共振耦合的电磁波单向吸收器[J]. 中国激光, 2016, 43(1): 0117001.

    马荣坤, 汤月明, 王纪俊, 等. 基于磁表面等离子体共振耦合的电磁波单向吸收器[J]. 中国激光, 2016, 43(1): 0117001.

    Ma Rongkun, Tang Yueming, Wang Jijun, et al. One-way absorber based on coupling of magnetic surface plasmonic resonances[J]. Chinese J Lasers, 2016, 43(1): 0117001.

    Ma Rongkun, Tang Yueming, Wang Jijun, et al. One-way absorber based on coupling of magnetic surface plasmonic resonances[J]. Chinese J Lasers, 2016, 43(1): 0117001.

[11] Shen X, Cui T J, Zhao J, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 2011, 19(10): 9401-9407.

    Shen X, Cui T J, Zhao J, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 2011, 19(10): 9401-9407.

[12] Li H, Yuan L H, Zhou B, et al. Ultrathin multiband gigahertz metamaterial absorbers[J]. Journal of Applied Physics, 2011, 110(1): 014909.

    Li H, Yuan L H, Zhou B, et al. Ultrathin multiband gigahertz metamaterial absorbers[J]. Journal of Applied Physics, 2011, 110(1): 014909.

[13] Cui Y, Fung K H, Xu J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447.

    Cui Y, Fung K H, Xu J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447.

[14] Cao S, Yu W, Zhang L, et al. Broadband efficient light absorbing in the visible regime by a metananoring array[J]. Annalen Der Physik, 2014, 526(1-2): 112-117.

    Cao S, Yu W, Zhang L, et al. Broadband efficient light absorbing in the visible regime by a metananoring array[J]. Annalen Der Physik, 2014, 526(1-2): 112-117.

[15] Cao S, Yu W, Wang T, et al. Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption[J]. Applied Physics Letters, 2013, 102(16): 021104-2642.

    Cao S, Yu W, Wang T, et al. Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption[J]. Applied Physics Letters, 2013, 102(16): 021104-2642.

[16] 许婉, 闫长春, 史俊贤, 等. 介质夹层对四扇环超常材料电磁吸收的影响研究[J]. 光学学报, 2015, 35(s1): s116003.

    许婉, 闫长春, 史俊贤, 等. 介质夹层对四扇环超常材料电磁吸收的影响研究[J]. 光学学报, 2015, 35(s1): s116003.

    Xu Wan, Yan Changchun, Shi Junxian, et al. Great impacts of the dielectriclayer in a four-fan-rings-shaped metamaterial on the absorption of electromagnetic waves[J]. Acta Optica Sinica, 2015, 35(s1): s116003.

    Xu Wan, Yan Changchun, Shi Junxian, et al. Great impacts of the dielectriclayer in a four-fan-rings-shaped metamaterial on the absorption of electromagnetic waves[J]. Acta Optica Sinica, 2015, 35(s1): s116003.

[17] Henry C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells[J]. Journal of Applied Physics, 1980, 51(8): 4494-4500.

    Henry C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells[J]. Journal of Applied Physics, 1980, 51(8): 4494-4500.

[18] Zhou J, Economon E N, Koschny T, et al. Unifying approach to left-handed material design[J]. Optics Letters, 2006, 31(24): 3620-3622.

    Zhou J, Economon E N, Koschny T, et al. Unifying approach to left-handed material design[J]. Optics Letters, 2006, 31(24): 3620-3622.

[19] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379.

    Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379.

[20] Palik ED. Handbook of optical constants of solids II[M] // Handbook of optical constants of solids. Boston: Academic Press, 1985, 33( 1): 189.

    Palik ED. Handbook of optical constants of solids II[M] // Handbook of optical constants of solids. Boston: Academic Press, 1985, 33( 1): 189.

[21] Nishi H, Asami K, Tatsuma T. CuS nanoplates for LSPR sensing in the second biological optical window[J]. Optical Materials Express, 2016, 6(4): 1043.

    Nishi H, Asami K, Tatsuma T. CuS nanoplates for LSPR sensing in the second biological optical window[J]. Optical Materials Express, 2016, 6(4): 1043.

[22] Jin H, Wang K, Guo J, et al. Slow-wave effect of substrate integrated waveguide patterned with microstrip polyline[J]. IEEE Transactions on Microwave Theory & Techniques, 2016, 64(6): 1717-1726.

    Jin H, Wang K, Guo J, et al. Slow-wave effect of substrate integrated waveguide patterned with microstrip polyline[J]. IEEE Transactions on Microwave Theory & Techniques, 2016, 64(6): 1717-1726.

[23] Zhao Y, Zhang Y N, Wang Q, et al. Review on the optimization methods of slow light in photonic crystal waveguide[J]. IEEE Transactions on Nanotechnology, 2015, 14(3): 407-426.

    Zhao Y, Zhang Y N, Wang Q, et al. Review on the optimization methods of slow light in photonic crystal waveguide[J]. IEEE Transactions on Nanotechnology, 2015, 14(3): 407-426.

[24] He S, Ding F, Mo L, et al. Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films[J]. Progress in Electromagnetics Research, 2014, 147: 69-79.

    He S, Ding F, Mo L, et al. Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films[J]. Progress in Electromagnetics Research, 2014, 147: 69-79.

[25] Sterligov V A, Grytsaienko I A, Men Y. Scattering of surface plasmon-polaritons and volume waves by a rough gold film[J]. Optics Letters, 2016, 41(16): 3710-3713.

    Sterligov V A, Grytsaienko I A, Men Y. Scattering of surface plasmon-polaritons and volume waves by a rough gold film[J]. Optics Letters, 2016, 41(16): 3710-3713.

[26] Liu Z, Liu G, Fu G, et al. Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial[J]. Optics Express, 2016, 24(5): 5020-5025.

    Liu Z, Liu G, Fu G, et al. Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial[J]. Optics Express, 2016, 24(5): 5020-5025.

[27] Kim J D, Lee Y G. Graphene-based plasmonic tweezers[J]. Carbon, 2016, 103: 281-290.

    Kim J D, Lee Y G. Graphene-based plasmonic tweezers[J]. Carbon, 2016, 103: 281-290.

[28] Zhang N, Zhou P, Wang S, et al. Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers[J]. Optics Communications, 2015, 338: 388-392.

    Zhang N, Zhou P, Wang S, et al. Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers[J]. Optics Communications, 2015, 338: 388-392.

[29] Vece M D, Kuang Y. Duren S N F V, et al. Plasmonic nano-antenna a-Si∶H solar cell[J]. Optics Express, 2012, 20(25): 27327-37336.

    Vece M D, Kuang Y. Duren S N F V, et al. Plasmonic nano-antenna a-Si∶H solar cell[J]. Optics Express, 2012, 20(25): 27327-37336.

朱路, 王杨, 熊广, 刘媛媛, 岳朝政. 宽波段纳米超材料太阳能吸收器的设计及其吸收特性[J]. 光学学报, 2017, 37(9): 0923001. Lu Zhu, Yang Wang, Guang Xiong, Yuanyuan Liu, Chaozheng Yue. Design and Absorption Characteristics of Broadband Nano-Metamaterial Solar Absorber[J]. Acta Optica Sinica, 2017, 37(9): 0923001.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!