中国激光, 2012, 39 (3): 0303008, 网络出版: 2012-01-17  

各向异性板中激光激发Lamb波的数值模拟

Numerical Simulation of Laser-Generated Lamb Waves in Anisotropic Plates
作者单位
1 江苏大学理学院, 江苏 镇江 212013
2 江苏大学土木工程与力学学院, 江苏 镇江 212013
摘要
基于谱有限元法和模态展开法,针对各向异性薄板,建立激光激发Lamb波的数值模型,得到各向异性薄板中Lamb波沿不同方向传播的色散曲线及Lamb波的传播特性。数值模拟结果表明,谱有限元法能快速有效地计算各向异性板中导波的相速度、群速度,结合模态展开法能够得到任何方向激光激发的Lamb波;Lamb波沿不同方向传播的速度及色散特性与材料的各向异性性质相关。数值模拟为更好地理解复杂介质中导波的传播、指导激励信号的选择及识别检测信号的模态提供了理论依据。
Abstract
Numerical model for laser-generated Lamb waves is established based on spectral finite element method and modal expansion method. The dispersion curves and propagation characteristics of laser-generated Lamb wave propagating along different directions are simulated. The simulation results show that phase velocity and group velocity of guided waves in anisotropic plates can be calculated efficiently by using spectral finite element method. And the laser-generated Lamb wave can be simulated in any direction by combining spectral finite element method with the modal expansion method. Furthermore, propagation velocity and dispersion characteristics of Lamb waves in different directions are closely related to the anisotropy of the material. The numerical simulation provides a theoretical basis for better understanding of the propagation of guided wave, the choice of excited signal and the identification of detected signal in the complex media.
参考文献

[1] J. C. Cheng, S. Y. Zhang. Quantitative theory for laser-generated Lamb waves in orthotropic thin plates[J]. Appl. Phys. Lett., 1999, 74(14): 2087~2089

[2] 倪晓武, 陈笑, 许伯强 等. 激光激发瞬态Lamb波的实验检测与数值模拟[J]. 南京理工大学学报, 2003, 27(5): 588~594

    Ni Xiaowu, Chen Xiao, Xu Baiqiang et al.. Study of laser-generated transient Lamb wave by experiment and numerical simulation[J]. J. Nanjing University of Science and Technology, 2003, 27(5): 588~594

[3] 许伯强, 倪晓武, 沈中华 等. 激光激发板状材料中超声导波的有限元数值模拟[J]. 中国激光, 2004, 31(5): 621~625

    Xu Baiqiang, Ni Xiaowu, Shen Zhonghua et al.. Numerical simulation of laser-generated ultrasounic by finite element method in the plate material[J]. Chinese J. Lasers, 2004, 31(5): 621~625

[4] 王敬时, 徐晓东, 刘晓峻 等. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应[J]. 物理学报, 2008, 57(12): 7765~7768

    Wang Jingshi, Xu Xiaodong, Liu Xiaojun et al.. Low pass effect of surface defect metal based on laser ultrasonic[J]. Acta Physica Sinina, 2008, 57(12): 7765~7768

[5] 董利明, 倪辰荫, 沈中华 等. 基于激光激发多模态超声波速测量的材料弹性常数测定[J]. 中国激光, 2011, 38(4): 0408004

    Dong Liming, Ni Chenyin, Shen Zhonghua et al.. Determination of elastic constants of materials based on the velocity measurement of laser-generated multi-mode ultrasound[J]. Chinese J. Lasers, 2011, 38(4): 0408004

[6] H. Sontag, A. C. Tam. Optical monitoring of photoacoustic pulse propagation in silicon wafers[J]. Appl. Phys. Lett., 1985, 46(8): 725~727

[7] D. A. Hutchins, K. Lundgren, S. B. Palmer. A laser study of transient Lamb waves in thin materials[J]. J. Acoust. Soc. Am., 1989, 85(4): 1441~1448

[8] L. R. F. Rose. Point-source representation for laser-generated ultrasound[J]. J. Acoust. Soc. Am., 1984, 75(3): 723~732

[9] J. C. Cheng, Y. H. Berthelot. Theory of laser-generated transient Lamb waves in orthotropic plates[J]. J. Phys. D: Appl. Phys., 1996, 29(7): 1857~1867

[10] F. A. McDonald. On the precursor in laser-generated ultrasound waveforms in metals[J]. Appl. Phys. Lett., 1990, 56(3): 230~232

[11] B. Q. Xu, J. Feng, G. D. Xu et al.. Laser-generated thermoelastic acoustic sources and Lamb waves in anisotropic plates[J]. Appl. Phys. A., 2008, 91(1): 173~179

[12] 孙宏祥, 许伯强. 激光激发Lamb波的有限元时域和频域数值分析[J]. 中国激光, 2010, 37(2): 537~542

    Sun Hongxiang, Xu Baiqiang. Numerical analysis of laser-generated Lamb waves by finite element method in time and frequency domain[J]. Chinese J. Lasers, 2010, 37(2): 537~542

[13] Hongxiang Sun, Baiqiang Xu, Guidong Xu et al.. Study on laser-generated Lamb waves propagation in viscoelastic and anisotropic plate[J]. Chin. Opt. Lett., 2010, 8(8): 776~779

[14] 潘波, 高倩, 张华. 黏弹性薄板中激光激发兰姆波的三维有限元模拟[J]. 激光与光电子学进展, 2010, 47(12): 121401

    Pan Bo, Gao Qian, Zhang Hua. Three-dimensional finite element simulations of laser-generated Lamb wave on viscoelastic thin plates[J]. Laser & Optoelectronics Progress, 2010, 47(12): 121401

[15] O. M. Mukdadi, S. K. Datta. Transient ultrasonic guided waves in layered plates with rectangular cross section[J]. J. Appl. Phys., 2003, 93(11): 9360~9370

[16] S. Finnveden, M. Fraggstedt. Waveguide finite elements for curved structures[J]. J. Sound Vib., 2008, 312(4-5): 644~671

[17] A. Bernard, M. J. S. Lowe, M. Deschamps. Guided waves energy velocity in absorbing and non-absorbing plates[J]. J. Acoust. Soc. Am., 2001, 110(1): 186~196

[18] G. R. Liu, K. Y. Dai, X. Han et al.. Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates[J]. J. Sound Vib., 2003, 268(1): 131~147

[19] I. Bartoli, A. Marzani, F. Lanza di Scalea et al.. Modeling wave propagation in damped waveguides of arbitrary cross-section[J]. J. Sound Vib., 2006, 295(3-5): 685~707

许伯强, 陈丽娟, 徐桂东, 徐晨光, 骆英. 各向异性板中激光激发Lamb波的数值模拟[J]. 中国激光, 2012, 39(3): 0303008. Xu Baiqiang, Chen Lijuan, Xu Guidong, Xu Chenguang, Luo Ying. Numerical Simulation of Laser-Generated Lamb Waves in Anisotropic Plates[J]. Chinese Journal of Lasers, 2012, 39(3): 0303008.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!