激光与光电子学进展, 2016, 53 (4): 040101, 网络出版: 2016-04-05   

海洋背景下气溶胶的偏振光散射特性研究 下载: 700次

Study on Polarized Light Scattering by Aerosol over Ocean
作者单位
山东理工大学电气与电子工程学院, 山东 淄博 255049
摘要
基于矢量辐射传输理论,利用矩阵算法研究了海洋-大气耦合系统中,海雾气溶胶对太阳光的偏振散射特性。整个大气层垂直方向分为若干平面平行层,考虑了大气分子、云层以及气溶胶的垂直分布;海洋表面按照风驱随机粗糙海面进行了分析,考虑了海洋波斜率分布和遮蔽效应;海洋体也由若干平面平行层构成,考虑了海水以及叶绿素的吸收和散射影响。大气和海洋体每层的反射矩阵和透射矩阵以及源函数由离散坐标方法计算,整个海-气系统的散射特性由矩阵方法通过耦合层与层之间相互辐射得到。研究了整个海-气系统反射的太阳辐射以及偏振度对太阳光的波长、入射天顶角、观测角度、海洋表面风速、云和气溶胶的光学厚度,以及气体吸收等的敏感性。计算结果表明,多波长多角度偏振度信息随海洋表面和大气环境变化敏感,可以结合辐射强度和偏振度对海洋背景下气溶胶特性进行遥感反演。
Abstract
Based on the radiative transfer theory, the polarized light scattering characteristics of sea spray in an atmosphere-ocean system by sunlight is studied based on the matrix operator method. The whole atmosphere layer is divided into many sub-layers in the vertical direction, and the vertical distributions of the atmosphere molecular, clouds and aerosol are considered. The ocean surface is dealt as the wind-generated rough ocean surface, and the wave slope distribution and the shadowing effect of the ocean wave are considered. The ocean body is divided into many plane parallel sub-layers, and the absorption and scattering characteristics of sea water and the chlorophyll are considered by an empirical model. The reflection and transmission matrices and source vectors are obtained for each atmospheric or oceanic layer though the discrete ordinate solution. The scattering characteristics of the whole atmosphere- ocean system are constructed using the matrix operated method, which combines the radiative interaction between the layers. The sensitivity studies for the reflected solar radiation by the whole atmosphere-ocean system are conducted for various solar wavelength, incidence solar zenith angle, observation angle, ocean-surface wind speed, the optical thickness of the clouds and aerosols, and the absorption of the gas. The simulation results show that the multi- wavelength and multi- angular polarization information are sensitive to the varies of the atmosphere and ocean surface conditions. The reflected solar radiative intensity and the polarization degree can be combined to retrieve the aerosol information.
参考文献

[1] 宫纯文, 李学彬, 李建玉, 等. 大气气溶胶消光系数测量新方法[J]. 光学学报, 2014, 34(1): 0101001.

    Gong Chunwen, Li Xuebin, Li Jianyu, et al.. New method of aerosol extinction coefficient measurement[J]. Acta Optica Sinica, 2014, 34(1): 0101001.

[2] 史博, 陶宗明, 麻晓敏, 等. 基于侧向散射技术的近地面气溶胶后向散射系数廓线探测[J]. 光学学报, 2015, 35(5): 0501006.

    Shi Bo, Tao Zongming, Ma Xiaomin, et al.. Measurements of near-ground aerosol backscattering coefficient profile with side-scatter technique[J]. Acta Optica Sinica, 2015, 35(5): 0501006.

[3] 伯广宇, 谢晨波, 王邦新, 等. 相对湿度影响地表气溶胶波长指数的个例研究[J]. 中国激光, 2015, 42(7): 0713002.

    Bo Guangyu, Xie Chenbo, Wang Bangxin, et al.. Case study of the relationship between aerosol angstrom exponent and relative humidity[J]. Chinese J Lasers, 2015, 42(7): 0713002.

[4] 卜一川, 赵永凯, 陈正岩, 等. 基于光散射的实时气溶胶粒子形状识别技术研究[J]. 中国激光, 2015, 42(4): 0413003.

    Bu Yichuan, Zhao Yongkai, Chen Zhengyan, et al.. Research on real-time aerosol particle shape identification based on scattered light detection[J]. Chinese J Lasers, 2015, 42(4): 0413003.

[5] 黄红莲, 易维宁, 乔延利. 基于航空偏振相机的海上气溶胶光学特性反演与验证[J]. 光学学报, 2014, 34(6): 0601004.

    Huang Honglian, Yi Weining, Qiao Yanli. Validation of retrieving aerosol optical parameters over the sea using airborne directional polarized camera[J]. Acta Optica Sinica, 2014, 34(6): 0601004.

[6] Mishchenko M I, Cairns B, Kopp G, et al.. Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory Mission[J]. Bulletin of the American Meteorological Society, 2007, 88(5): 677-691.

[7] Hansen J, Sato M, Ruedy R, et al.. Global temperature change[J]. Proceedings of the National Academy of Sciences, 2006, 103(39): 14288-14293.

[8] Hansen J, Nazarenko L, Ruedy R, et al.. Earth's energy imbalance: Confirmation and implications[J]. Science, 2005, 308(5727): 1431-1435.

[9] Kattawar G W, Adams C N. Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a rayleigh phase matrix: Effect of interface refractive index on radiance and polarization[J]. Limnology and Oceanography, 1989, 34(8): 1453-1472.

[10] Takashima T, Masuda K. Degree of radiance and polarization of the upwelling radiation from an atmosphere–ocean system [J]. Applied Optics, 1985, 24(15): 2423-2429.

[11] Chami M. Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance[J]. Journal of Geophysical Research Oceans, 2007, 112(C5): 395-412.

[12] Nakajima T, Tanaka M. Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1986, 35(1): 13-21.

[13] Ota Y, Higurashi A, Nakajima T, et al.. Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(6): 878-894.

[14] Hansen J E, Travis L D. Light scattering in planetary atmospheres[J]. Space Science Reviews, 1974, 16(4): 527-610.

[15] Shettle E P, Fenn R W. Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties[R]. Air Force Geophysics Lab Hanscom Afb Ma, 1979.

[16] Nakajima T, Tanaka M. Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1983, 29(6): 521-537.

[17] Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun′s glitter[J]. J Opt Soc Am, 1954, 44(11): 838-850.

[18] Ebuchi N, Kizu S. Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers[J]. Journal of Oceanography, 2002, 58(3): 477-486.

[19] Saunders P M. Shadowing on the ocean and the existence of the horizon[J]. Journal of Geophysical Research, 1967, 72(18): 4643-4649.

[20] Hovenier J W, Mee C V D, Domke H. Transfer of polarized light in planetary atmospheres: Basic concepts and practical methods[M]. Dordrecht: Kluwer Academic Publishers, 2005.

[21] Bricaud A, M Babin, A Morel, et al.. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization[J]. Journal of Geophysical Research Atmospheres, 1995, 100: 13321-13332.

[22] Morel A, S Maritorena. Bio-optical properties of oceanic waters: A reappraisal[J]. Journal of Geophysical Research Oceans, 2001, 106(C4): 7163-7180.

[23] Hulst H C van de. Multiple light scattering. Tables, formulas and applications[M]. New York: Academic Press, 1980.

[24] Nakajima T, Tanaka M. Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1986, 35(1): 13-21.

孙贤明, 王海华, 申晋, 万隆. 海洋背景下气溶胶的偏振光散射特性研究[J]. 激光与光电子学进展, 2016, 53(4): 040101. Sun Xianming, Wang Haihua, Shen Jin, Wan Long. Study on Polarized Light Scattering by Aerosol over Ocean[J]. Laser & Optoelectronics Progress, 2016, 53(4): 040101.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!