光学学报, 2009, 29 (s2): 125, 网络出版: 2010-01-27  

实用化色散补偿光子晶体光纤设计

作者单位
北京交通大学 光波技术研究所, 北京 100044
摘要
应用全矢量有限元法理论分析了普通同轴双芯掺杂结构产生大负色散特性的结构特点和原理,将这种双芯结构引入到光子晶体光纤(PCF)中,并提出一种新型的可实用化的色散补偿光子晶体光纤(DCPCF)结构。该结构由掺氟棒构成较低折射率的环形外芯,而内芯采用纯石英材料以降低由于掺杂过程引入的附加损耗,空气孔采用同一尺寸以简化制作工艺,选用7.5 μm左右的大孔距来获得与普通单模光纤耦合时的模场匹配。通过改变包层中空气孔的孔距、孔径,掺氟区域的大小和掺氟量,可以对光纤的色散特性进行调节。得出在Λ=7.5 μm, d/Λ=0.44, dF/Λ=0.45, nF=1.436788时,在1550 nm附近的色散值在-1240 ps/(nm·km)左右,内芯的模场面积为74.7 μm2。
Abstract
By using full vector finite element method, a novel practicable dispersion compensation photonic crystal fiber (DCPCF) is proposed based on the construction features and principle of traditional concentric dual-core doped silica fibers. The DCPCF structure is composed of lower refractive index outer ring core and pure silica inner core for reducing the doping-procedure-induced added losses. The air holes have the same diameter to simplify the fabrication, and the hole-pitch adopts as large as 7.5 μm to pursue the model field area matching with traditional single mode fibers (SMFs). By adjusting hole-pitch, hole diameter, quantities and sizes of fluorine doped region, the dispersion properties of DCPCF can be designed freely. After a series of calculation, when Λ=7.5 μm, d/Λ=0.44 dF/Λ=0.45 and nF=1.436788, the dispersion value is about -1240 ps/(nm·km) and inner core mode field area is 74.7 μm2 around the wavelength of 1550 nm.
参考文献

[1] . C. Knight, T. A. Birks, P. S. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547-1549.

[2] . S. J. Russell. Photonic-crystal fibers[J]. J. Lightwave Technol., 2006, 24(12): 4729-4749.

[3] . Filippov, Y. Chamorovskii, J. Kerttula et al.. Double clad tapered fiber for high power applications[J]. Opt. Express, 2008, 16(3): 1929-1944.

[4] . Boullet, Y. Zaouter, R. Desmarchelier et al.. High power ytterbium-doped rod-type three-level photonic crystal fiber laser[J]. Opt. Express, 2008, 16(22): 17891-17902.

[5] . K. Varshney, K. Saitoh, M. Koshiba. A novel design for dispersion compensating photonic crystal fiber Raman amplifier[J]. IEEE Photonic. Tech. L., 2005, 17(10): 2062-2064.

[6] . Ju, L. Ma, W. Jin et al.. Photonic bandgap fiber tapers and in-fiber interferometric sensors[J]. Opt. Lett., 2009, 34(12): 1861-1863.

[7] . J. Antos, D. K. Smith. Design and characterization of dispersion compensating fiber based on the LP01 mode[J]. J. Lightwave Technol., 1994, 12(10): 1739-1745.

[8] . L. Auguste, J. M. Blondy, J. Maury et al.. Conception, realization, and characterization of a very high negative chromatic dispersion fiber[J]. Optical Fiber Technology, 2002, 8(1): 89-105.

[9] . Poli, A. Cucinotta, M. Fuochi et al.. Characterization of microstructured optical fibers for wideband dispersion compensation[J]. J. Opt. Soc. Am. A, 2003, 20(10): 1958-1962.

[10] . Huttunen, P. Torma. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area[J]. Opt. Express, 2005, 13(2): 627-635.

[11] . P. Yu, J. H. Liou, S. S. Huang et al.. Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation[J]. Opt. Express, 2008, 16(7): 4443-4451.

[12] . Subbaraman, T. Ling, Y. Jiang et al.. Design of a broadband highly dispersive pure silica photonic crystal fiber[J]. Appl. Optics, 2007, 46(16): 3263-3268.

[13] 郭铁英,娄淑琴,李宏雷 等. 光子晶体光纤的低损耗电弧熔接方案[J]. 光学学报, 2009, 29(2): 511~516

    Guo Tieying, Lou Shuqin, Li Honglei et al.. Low loss arc fusion splice of photonic crystal fibers[J]. Acta Optica Sinica, 2009, 29(2): 511~516

[14] 方宏, 娄淑琴, 任国斌 等. 光子晶体光纤接续损耗的理论分析[J]. 光学学报, 2006, 26(6): 806~811

    Fang Hong, Lou Shuqing, Ren guobin et al.. Theoretical analysis on splice loss of photonic crystal fibers[J]. Acta Optica Sinica, 2006, 26(6): 806~811

[15] . Wu, D. Huang, H. Liu et al.. Broadband dispersion compensating fiber using index-guiding photonic crystal fiber with defected core[J]. Chin. Opt. Lett., 2008, 6(1): 22-24.

[16] N. A. Mortensen. Effective area of photonic crystal fibers[J]. Opt. Express, 2002. 10(7): 341~348

李宏雷, 娄淑琴, 郭铁英, 陈卫国, 王立文, 简水生. 实用化色散补偿光子晶体光纤设计[J]. 光学学报, 2009, 29(s2): 125. Li Honglei, Lou Shuqin, Guo Tieying, Chen Weiguo, Wang Liwen, Jian Shuisheng. [J]. Acta Optica Sinica, 2009, 29(s2): 125.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!