液晶与显示, 2020, 35 (4): 360, 网络出版: 2020-05-30   

结合分数阶微分及Retinex的NSCT自适应低照度图像增强

NSCT adaptive low illumination image enhancement combining fractional differential and Retinex
作者单位
1 阳光学院 人工智能学院, 福建 福州 350015
2 福州大学 物理与信息工程学院, 福建 福州 350108
摘要
针对低照度图像存在亮度低、对比度低、边缘模糊等问题, 首先将低照度图像NSCT多尺度分解, 获得低频子带图像和高频子带系数; 接着将低频图像采用多尺度Retinex 提升图像亮度, 借助非线性的双边滤波函数估计其照度分量, 利用Gamma校正函数对照度分量进行校正, 提高图像的动态范围, 利用影响因子校正反射分量, 丰富其层次性, 对图像的整体轮廓进行增强; 然后将高频部分用Bayes阈值隔离噪声, 利用自适应分数阶微分对图像的边缘、纹理等细节进行增强; 最后对处理后的图像进行NSCT重构。实验结果表明,本文算法的对比度、清晰度及信息熵与现有增强方法相比, 平均提高了10.7%、9.8%、2.3%。增强后的图像在细节、边缘保持等方面也优于现有算法, 改善了图像整体的视觉效果。
Abstract
Aiming to solve the low illumination images of low brightness, low contrast, and blurred edges, an NSCT (Non-Subsampled Contourlet Transform) domain images enhancement algorithm is proposed based on adaptive Retinex and adaptive fractional differential. Firstly, multi-scale NSCT decomposition of low-illuminance images is needed to obtain low-frequency subbed images and high-frequency subbed coefficients. The image brightness of low-frequency images needs to be improved by multi-scale Retinex, and using non-linear bilateral filtering function to estimate the illumination component. The illuminance component is corrected with the gamma correction functions to improve the dynamic range of the image, and the reflection component is corrected using the influence factor to enrich its hierarchy and enhance the overall outline of the image. Then, the Bayes threshold is used to isolate noise in the high-frequency part, the adaptive fractional differentiation can be used to enhance the details of the edges and textures of the image. Finally, NSCT reconstructs the processed image. The experimental results show that the contrast, sharpness and information entropy of the algorithm in this paper are improved by 10.7%, 9.8%, and 2.3% on average compared with the existing enhancement methods. The enhanced image is also superior to existing algorithms in terms of details and edge preservation, which improves the overall visual effect of the image.
参考文献

[1] 王浩, 张叶, 沈宏海, 等.图像增强算法综述 [J].中国光学, 2017, 10(4): 438-448.

    WANG H, ZHANG Y, SHEN H H, et al. Review of image enhancement algorithms [J]. Chinese Optics, 2017, 10(4): 438-448. (in Chinese)

[2] 张锐, 贾娜.海域图像增强方法综述 [J].液晶与显示, 2017, 32(10): 828-834.

    ZHANG R, JIA N. Sea image enhancement review [J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(10): 828-834. (in Chinese)

[3] LI S, JIN W Q, LI L, et al. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization [J]. Infrared Physics & Technology, 2018, 90: 164-174.

[4] 董丽丽, 丁畅, 许文海.基于直方图均衡化图像增强的两种改进方法 [J].电子学报, 2018, 46(10): 2367-2375.

    DONG L L, DING C, XU W H. Two improved methods based on histogram equalization for image enhancement [J]. Acta Electronica Sinica, 2018, 46(10): 2367-2375. (in Chinese)

[5] 张毅, 李杨, 谢陈磊, 等.基于变异系数反馈调整的自适应双平台直方图均衡化 [J].红外技术, 2019, 41(3): 262-267.

    ZHANG Y, LI Y, XIE C L, et al. Adaptive dual-plateaus histogram equalization based on coefficient of variation combined with feedback control principle [J]. Infrared Technology, 2019, 41(3): 262-267. (in Chinese)

[6] 万智萍.结合视觉特性与灰度拉伸的直方图均衡化红外图像算法 [J].计算机工程与设计, 2016, 37(3): 714-719.

    WAN Z P. Infrared image histogram equalization algorithm based on visual characteristics and gray stretch [J]. Computer Engineering and Design, 2016, 37(3): 714-719. (in Chinese)

[7] LAND E H, MCCANN J J. Lightness and Retinex theory [J]. Journal of the Optical Society of America, 1971, 61(1): 1-11.

[8] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround Retinex [J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.

[9] JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale Retinex for bridging the gap between color images and the human observation of scenes [J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.

[10] ELAD M. Retinex by two bilateral filters [C]//Proceedings of the 5th International Conference on Scale Space and PDE Methods in Computer Vision. Hofgeismar: Springer, 2005: 217-229.

[11] WANG Y F, WANG H Y, YIN C L, et al. Biologically inspired image enhancement based on Retinex [J]. Neurocomputing, 2016, 177: 373-384.

[12] HE K M, SUN J, TANG X O. Guided image filtering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.

[13] ZHANG S, TANG G J, LIU X H H, et al. Retinex based low-light image enhancement using guided filtering and variational framework [J]. Optoelectronics Letters, 2018, 14(2): 156-160.

[14] 云海姣, 吴志勇, 王冠军, 等.结合直方图均衡和模糊集理论的红外图像增强 [J].计算机辅助设计与图形学学报, 2015, 27(8): 1498-1505.

    YUN H J, WU Z Y, WANG G J, et al. Enhancement of infrared image combined with histogram equalization and fuzzy set theory [J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(8): 1498-1505. (in Chinese)

[15] 朱国庆, 李庆武, 林少飞, 等.基于人眼视觉特性的非下采样轮廓波变换域红外图像增强算法[J].激光与光电子学进展, 2015, 52(1): 011001.

    ZHU G Q, LI Q W, LIN S F, et al. Infrared image enhancement algorithm based human visual system characteristic via non-subsampled Contourlet transform domain [J]. Laser & Optoelectronics Progress, 2015, 52(1): 011001. (in Chinese)

[16] 陈庆利, 黄果, 门涛, 等.数字图像的局部分数阶微分增强[J].四川大学学报: 工程科学版, 2016, 48(4): 115-122.

    CHEN Q L, HUANG G, MEN T, et al. Local fractional differential algorithm for image enhancement [J]. Journal of Sichuan University: Engineering Science Edition, 2016, 48(4): 115-122. (in Chinese)

[17] 朱丹丹, 王斌, 杨奕, 等.Contourlet变换和遗传算法相结合的沥青红外图像增强方法[J].计量学报, 2019, 40(1): 25-30.

    ZHU D D, WANG B, YANG Y, et al. Asphalt infrared image enhancement of combining Contourlet transform with genetic algorithm [J]. Acta Metrologica Sinica, 2019, 40(1): 25-30. (in Chinese)

[18] 曹美, 程亚玲, 盛惠兴, 等.改进的直方图均衡化和NSCT变换的红外图像增强 [J].应用科技, 2016, 43(2): 24-27.

    CAO M, CHENG Y L, SHENG H X, et al. Application of improved histogram equalization and NSCT transform algorithm in infrared image enhancement [J]. Applied Science and Technology, 2016, 43(2): 24-27. (in Chinese)

[19] CAO T, WANG W X. Depth image enhancement and detection on NSCT and fractional differential [J]. Wireless Personal Communications, 2018, 103(1): 1025-1035.

[20] DACUNHA A L, ZHOU J, DO M N. The nonsubsampled contourlet transform: theory, design, and applications [J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101.

[21] WANG L Q, XIAO L, LIU H Y, et al. Variational Bayesian method for Retinex [J]. IEEE Transactions on Image Processing, 2014, 23(8): 3381-3396.

[22] 廖一鹏, 王卫星, 付华栋, 等.结合分数阶微分的浮选泡沫图像NSCT多尺度增强[J].华南理工大学学报: 自然科学版, 2018, 46(3): 92-102.

    LIAO Y P, WANG W X, FU H D, et al. Flotation foam image NSCT multi-scale enhancement with fractional differential [J]. Journal of South China University of Technology: Natural Science Edition, 2018, 46(3): 92-102. (in Chinese)

[23] 马荣贵, 王卫星, 刘威, 等.结合分数阶微分和暗原色先验及Retinex的去雾算法 [J].华南理工大学学报: 自然科学版, 2016, 44(9): 16-23.

    MA R G, WANG W X, LIU W, et al. A haze removal algorithm combining fractional differential, dark channel prior and Retinex [J]. Journal of South China University of Technology: Natural Science Edition, 2016, 44(9): 16-23. (in Chinese)

[24] YUAN X C, WU L S, PENG Q J. An improved Otsu method using the weighted object variance for defect detection[J]. Applied Surface Science, 2015, 349: 472-484.

[25] 李博, 谢巍.基于二维Otsu准则的自适应分数阶微分的图像增强算法[J].控制理论与应用, 2015, 32(6): 794-800.

    LI B, XIE W. An algorithm for image enhancement based on adaptive fractional differential using two-dimensional Otsu standard [J]. Control Theory & Applications, 2015, 32(6): 794-800. (in Chinese)

林剑萍, 廖一鹏. 结合分数阶微分及Retinex的NSCT自适应低照度图像增强[J]. 液晶与显示, 2020, 35(4): 360. LIN Jian-ping, LIAO Yi-peng. NSCT adaptive low illumination image enhancement combining fractional differential and Retinex[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(4): 360.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!