中国激光, 2009, 36 (8): 1963, 网络出版: 2009-08-13   

微透镜集成大功率垂直腔面发射激光器

High-Power and Microlens-Integrated Vertical Cavity Surface Emitting Lasers
作者单位
1 中国科学院长春光学精密机械与物理研究所激发态物理重点实验室, 吉林 长春 130033
2 中国科学院研究生院, 北京 100039
摘要
为了改善大功率垂直腔面发射激光器(VCSEL)的模式特性, 在GaAs衬底上采用限制扩散湿法刻蚀技术制作出了不同曲率半径的微透镜, 与P型和N型分布式布拉格反射镜(DBR)构成复合腔结构, 可以对腔内模式进行选择。有源区采用新型的发射波长为980 nm的InGaAs/GaAs应变量子阱, 包括9对In0.2Ga0.8As (6 nm)/Ga0.18As0.82P(8 nm)量子阱, 有源区直径100 μm, 微透镜直径300 μm, 曲率半径959.81 μm, 表面粗糙度13 nm。室温下, 器件连续输出功率大于180 mW, 阈值电流200 mA, 远场发散角半角宽度分别为7.8°和8.4°, 并且与没有微透镜的垂直腔面发射激光器输出特性进行了比较。
Abstract
In order to improve the characteristics of the transverse mode of high-power vertical cavity surface emitting lasers (VCSELs), microlens are used to realize high power and single transverse mode by forming a compound cavity with P-DBR and N-DBR of the VCSEL chip. Convex microlens is fabricated by one-step diffusion-limited wet-etching techniques on GaAs substrate. A novel material structure with nine In0.2Ga0.8As (6 nm)/Ga0.18As0.82P(8 nm) quantum wells is employed to emit the wavelength of 980 nm. The diameter of the active layer is about 100 μm, and the nominal diameter of the microlens is 300 μm. The curvature radius of 959.81 μm and the RMS of the whole microlens surface of 13 nm are obtained. The maximum output power is 180 mW in continuous-wave (CW) operation at room temperature. The far-field FWHM divergence angle θ∥and θ⊥of the single device at a current of 1500 mA is 7.8°, 8.4°, respectively. The operation performance between microlens-integrated VCSEL and ordinary VCSEL is also discussed.
参考文献

[1] 李特, 宁永强, 孙艳芳 等. 980 nm高功率VCSEL的光束质量 [J]. 中国激光, 2007, 34(5): 641~645

    Li Te, Ning Yongqiang, Sun Yanfang et al.. Beam quality of 980 nm high power vertical-cavity surface-emitting laser[J]. Chinese J. Lasers, 2007, 34(5): 641~645

[2] Fumio Koyama. New functions of VCSEL-based optical devices[J]. Chin. Opt. Lett., 2008, 6(10): 755~762

[3] 王晋飞, 胡贵军, 曲仁慧 等. 多模光纤模式群分集复用系统[J]. 中国激光, 2008, 35(12): 1966~1969

    Wang Jinfei, Hu Guijun, Qu Renhui et al.. Multimode fiber communication system based on mode group diversity multiplexing[J]. Chinese J. Lasers, 2008, 35(12): 1966~1969

[4] . Martinsson, J. A. Vukusic, M. Grabberr et al.. Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief[J]. IEEE Photon. Technol. Lett., 1999, 11(12): 1536-1538.

[5] . Y. Huang, Ye Zhou, Connie J. Chang-Hasnain, Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers[J]. Appl. Phys. Lett., 2008, 92(17): 171108.

[6] . J. Mawst. High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting laser[J]. IEEE J. Quantum Electron., 2002, 38(12): 1599-1606.

[7] . E. Giudice, D. V. Kuksenkov, L. G. De Peralta et al.. Single-mode operation from an external cavity controlled vertical-cavity surface-emitting laser[J]. IEEE Photon. Technol. Lett., 1999, 11(12): 1545-1547.

[8] . . Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers[J]. Appl. Phys. Lett., 2002, 80(21): 3901-3903.

[9] Yanrong Song, Peng Zhang, Xinping Zhang et al.. Intracavity frequency-doubled green vertical external cavity surface emitting laser[J]. Chin. Opt. Lett., 2008, 6(4): 271~273

[10] . . Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation[J]. Appl. Phys. Lett., 2002, 80(2): 183-185.

[11] . A. Keeler, D. K. Serkland, K. M. Geib et al., Single transverse mode operation of electrically pumped vertical-external-cavity surface-emitting lasers with micromirrors[J]. IEEE. Photon. Technol. Lett., 2005, 17(3): 522-524.

[12] . . High-power single transverse mode vertical-cavity surface-emitting lasers with monolithically integrated curved dielectric mirrors[J]. IEEE. Photon. Technol. Lett., 2008, 20(24): 2084-2086.

[13] . Oikawa, K Iga, T Sanada. Array of distributed-index planar micro-lenses prepared from ion exchange technique[J]. Jpn. J. App1.Phys, 1981, 48(1): 49-50.

[14] . F. Borrelli, D. L. Morse, R. H. Bellman et al.. Photolytic technique for producing microlenses in photosensitive glass[J]. Appl. Opt., 1985, 24(16): 2520-2525.

[15] . D. Popovic, R. A. Sprague, G. A. Neville Technique for monolithic fabrication of microlens array[J]. Appl. Opt., 1998, 27(4): 1281-1284.

[16] . Fu, B. K. A. Ngoi. Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology[J]. Optical Engineering, 2001, 40(4): 511-516.

[17] 郝永芹, 刘文莉, 钟景昌 等.垂直腔面发射激光器制作新工艺[J].中国激光, 2006, 33(4): 443~446

    Hao Yongqin, Liu Wenli, Zhong Jingchang et al.. A new process in fabrication of vertical-cavity surface emitting laser[J]. Chinese J. Lasers, 2006, 33(4): 443~446

[18] 赵路民, 王青, 晏长岭 等. 980 nm 高功率垂直腔面发射激光器[J]. 中国激光, 2004, 31(2): 142~144

    Zhao Lumin, Wang Qing, Yan Changling et al.. 980 nm high power vertical cavity surface emitting laser[J]. Chinese J. Lasers, 2004, 31(2): 142~144

[19] . . Semiconductor microlenses fabricated by one-step wet etching[J]. IEEE Photon. Technol. Lett., 2000, 12(5): 507-509.

[20] . Theory of the mode stabilization mechanism in concave-micro mirror-capped vertical-cavity surface-emitting laser[J]. J. Appl. Phys., 2003, 94: 1312-1317.

王贞福, 宁永强, 张岩, 史晶晶, 李特, 崔锦江, 刘光裕, 张星, 秦莉, 孙艳芳, 刘云, 王立军. 微透镜集成大功率垂直腔面发射激光器[J]. 中国激光, 2009, 36(8): 1963. Wang Zhenfu, Ning Yongqiang, Zhang Yan, Shi Jingjing, Li Te, Cui Jinjiang, Liu Guangyu, Zhang Xing, Qin Li, Sun Yanfang, Liu Yun, Wang Lijun. High-Power and Microlens-Integrated Vertical Cavity Surface Emitting Lasers[J]. Chinese Journal of Lasers, 2009, 36(8): 1963.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!