激光与光电子学进展, 2017, 54 (9): 090002, 网络出版: 2017-09-06   

光流体可变光圈的研究现状 下载: 934次

Research Status of Optofluidic Variable Aperture
作者单位
重庆理工大学药学与生物工程学院, 重庆 400054
引用该论文

吕红艳, 崔建国, 刘盛雄, 孙中杰, 蒲山山, 谢亮. 光流体可变光圈的研究现状[J]. 激光与光电子学进展, 2017, 54(9): 090002.

Lü Hongyan, Cui Jianguo, Liu Shengxiong, Sun Zhongjie, Pu Shanshan, Xie Liang. Research Status of Optofluidic Variable Aperture[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090002.

参考文献

[1] Tognetto D, Agolini G, Grandi G, et al. Iris alteration using mechanical iris retractors[J]. Journal of Cataract & Refractive Surgery, 2001, 27(10): 1703-1705.

[2] Wang Z Y, Ding H, Lu G J, et al. Use of a mechanical iris-based fiber optic probe for spatially offset Raman spectroscopy[J]. Optics Letters, 2014, 39(13): 3790-3793.

[3] 崔建国, 王润诗, 袁 伟, 等. 液体透镜研究现状与展望[J]. 重庆理工大学学报(自然科学版), 2016, 30(11): 105-110.

    Cui Jianguo, Wang Runshi, Yuan Wei, et al. Liquid lens research status and prospects[J]. Journal of Chongqing University of Technology (Natural Science), 2016, 30(11): 105-110.

[4] 王 迪, 李芳转, 王琼华, 等. 一种基于液体透镜的全息色差补偿方法[J]. 中国激光, 2015, 42(5): 0509001.

    Wang Di, Li Fangzhuan, Wang Qionghua, et al. A method of holographic chromatic aberration compensation based on a liquid lens[J]. Chinese J Lasers, 2015, 42(5): 0509001.

[5] 潘文强, 李湘宁, 卢 山, 等. 液体透镜变焦系统高斯理论分析[J]. 光学学报, 2016, 36(12): 1222003.

    Pan Wenqiang, Li Xiangning, Lu Shan, et al. Gauss theoretical analysis of liquid crystal lens zoom system[J]. Acta Optica Sinica, 2016, 36(12): 1222003.

[6] Calixto S, Sánchez-Morales M E, Sánchez-Marin F J, et al. Optofluidic variable focus lenses[J]. Applied Optics, 2009, 48(12): 2308-2314.

[7] Wang D, Liu C, Li L, et al. Adjustable liquid aperture to eliminate undesirable light in holographic projection[J]. Optics Express, 2016, 24(3): 2098-2105.

[8] 孙志文, 谢二庆, 韩卫华, 等. 电润湿的研究进展[J]. 液晶与显示, 2008, 23(3): 387-392.

    Sun Zhiwen, Xie Erqing, Han Weihua, et al. Progress of electrowetting[J]. Chinese Journal of Liquid Crystals and Displays, 2008, 23(3): 387-392.

[9] 唐 彪, 赵 青, 周 敏, 等. 电润湿动力学描述及其非稳态研究进展[J]. 华南师范大学学报(自然科学版), 2016, 48(1): 35-41.

    Tang Biao, Zhao Qing, Zhou Min, et al. Research progress in electrowetting dynamics and its instability[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(1): 35-41.

[10] 凌明祥. 基于介电润湿效应的微液滴操控研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    Ling Mingxiang. Research on manipulation and control of droplets based on electrowetting on dielectric[D]. Harbin: Harbin Institute of Technology, 2011.

[11] 朱喜霞. 基于电介质上的电润湿现象研究[J]. 制造业自动化, 2009, 31(8): 173-175.

    Zhu Xixia. The research on the phenomenon of the EWOD[J] .Manufacturing Automation, 2009, 31(8): 173-175.

[12] 赵 辉. 介电泳和介电润湿技术装置的设计与应用[D]. 南京: 东南大学, 2012.

    Zhao Hui. Design and application of dielectrophoresis and dielectric wetting technology[D]. Nanjing: Southeast University, 2012.

[13] 赵 瑞, 田志强, 刘启超, 等. 介电润湿液体光学棱镜[J]. 光学学报, 2014, 34(12): 1223003.

    Zhao Rui, Tian Zhiqiang, Liu Qichao, et al. Optical prism of dielectric wetting liquid[J]. Acta Optica Sinica, 2014, 34(12): 1223003.

[14] Muller P, Feuerstein R, Zappe H. Integrated optofluidic iris[J]. Journal of Microelectromechanical Systems, 2012, 21(5): 1156-1164.

[15] Müller P, Feuerstein R, Zappe H. A fully integrated optofluidic micro-iris[C]. Micro Electro Mechanical Systems, 2012: 7-10.

[16] Li L, Liu C, Ren H W, et al. Adaptive liquid iris based on electrowetting[J]. Optics Letters, 2013, 38(13): 2336-2338.

[17] 李显歌, 白鹏飞, 水玲玲, 等. Teflon AF1600作为电润湿显示器件疏水绝缘层的可靠性研究[J]. 华南师范大学学报(自然科学版), 2015, 47(2): 17-20.

    Li Xiange, Bai Pengfei, Shui Lingling, et al. The reliability of electrofluidic display devices based on Teflon AF1600[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(2): 17-20.

[18] Yu C C, J Ho J R, John Cheng J W. Tunable liquid iris actuated using electrowetting effect[J]. Optical Engineering, 2014, 53(5): 057106.

[19] Li L, Liu C, Wang Q H. Electrowetting-based liquid iris[J]. IEEE Photonics Technology Letters, 2013, 25(10): 989-991.

[20] Li L, Wang Q H, Liu C, et al. Adaptive liquid iris for optical switch[J]. Optical Engineering, 2014, 53(4): 047105.

[21] Schuhladen S, Banerjee K, Stürmer M, et al. Variable optofluidic slit aperture[J]. Light: Science & Applications, 2016, 5(1): e16005.

[22] Xu S, Ren H W, Wu S T. Dielectrophoretically tunable optofluidic devices[J]. Journal of Physics D: Applied Physics, 2013, 46(48): 483001.

[23] Yang C C, Yang L, Tsai C G, et al. Fully developed contact angle change of a droplet in liquid actuated by dielectric force[J]. Applied Physics Letters, 2012, 101(18): 182903.

[24] Ren H W, Xu S, Ren D Q, et al. Novel optical switch with a reconfigurable dielectric liquid droplet[J]. Optics Express, 2011, 19(3): 1985-1990.

[25] Luo Z Y, Xu S, Gao Y T, et al. Quantum dots enhanced liquid displays[J]. Journal Display Technology, 2014, 10(12): 987-990.

[26] Xu M, Ren H W, Lin Y H. Electrically actuated liquid iris[J]. Optics Letters, 2015, 40(5): 831-834.

[27] Tsai C G, Yeh J A. Circular dielectric liquid iris[J]. Optics Letters, 2010, 35(14): 2484-2486.

[28] Chang J H, Jung K D, Lee E, et al. Variable aperture controlled by microelectrofluidic iris[J]. Optics Letters, 2013, 38(15): 2919-2922.

[29] Chang J, Jung K D, Lee E, et al. Microelectrofluidic iris for variable aperture[C]. SPIE, 20128252: 82520O.

[30] Oh S H, Seo J H, Jeon J P, et al. Liquid lens based on electromagnetic actuation for high-performance miniature cameras[C]. Anchorage: 2015 Transducers-2015 18th International Conference on Solid-State Sensors, 2015: 2077-2080.

[31] Seo H W, Chae J B, Honga S J, et al. Electromagnetically driven liquid iris[J]. Sensors and Actuators A: Physical, 2015, 231: 52-58.

[32] Jang D, Jeong J W, Lee D Y, et al. Electromagnetically driven liquid iris[C]. APS Division of Fluid Dynamics, 2016.

[33] Seo H W, Chae J B, Hong S J, et al. A tunable optical iris based on electromagnetic actuation for a high-performance mini/micro camera[C]. San Francisco: 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems, 2014: 1147-1150.

[34] Yu H B, Zhou G Y, Chau F S, et al. Optofluidic variable aperture[J]. Optics Letters, 2008, 33(6): 548-550.

[35] Song C L, Nguyen N T, Asundi A K, et al. Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure[J]. Optics Letters, 2011, 36(10): 1767-1769.

[36] Schadt M, Helfrich W. Voltage-dependent optical activity of a twisted nematic liquid crystal[J]. Applied Physics Letters, 1971, 18(4): 127-128.

[37] Zhou Z W, Ren H W, Nah C W. Adaptive liquid crystal iris[J]. Japanese Journal of Applied Physics, 2014, 53(9): 092201.

[38] Muller P, Spengler N, Zappe H, et al. An optofluidic concept for a tunable micro-iris[J]. Journal of Microelectromechanical Systems, 2010, 19(6): 1477-1484.

吕红艳, 崔建国, 刘盛雄, 孙中杰, 蒲山山, 谢亮. 光流体可变光圈的研究现状[J]. 激光与光电子学进展, 2017, 54(9): 090002. Lü Hongyan, Cui Jianguo, Liu Shengxiong, Sun Zhongjie, Pu Shanshan, Xie Liang. Research Status of Optofluidic Variable Aperture[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!