激光与光电子学进展, 2017, 54 (9): 090002, 网络出版: 2017-09-06   

光流体可变光圈的研究现状 下载: 934次

Research Status of Optofluidic Variable Aperture
作者单位
重庆理工大学药学与生物工程学院, 重庆 400054
摘要
光流体可变光圈在图像采集、目标追踪、生物识别和其他便携式电子设备中具有重要的应用潜力。与机械光圈相比, 该光圈孔径是近乎完美的可调圆形, 且光流体可变光圈具有易于加工、结构紧凑、驱动便捷和功耗低等优点, 故已成为当今微纳光学研究领域的热点之一。综述国内外现有光流体可变光圈技术的发展现况, 通过总结前人的研究方法, 展望未来光流体可变光圈的发展方向。
Abstract
Optofluidic variable aperture has important application potential in image acquisition, target tracking, biological recognition and other portable electronic devices. Comparing with the mechanical aperture, the aperture is almost perfectly adjustable circle, and it has some advantages such as easy to process, compact structure, convenient driving and low power consumption, etc. So it has become one of the hot spots in the field of micro-nano optical research at present. This paper summarizes the development status of the existing optofluidic variable aperture technology at home and abroad, and looks forward to the future development direction of optofluidic variable aperture by summarizing the previous research methods.
参考文献

[1] Tognetto D, Agolini G, Grandi G, et al. Iris alteration using mechanical iris retractors[J]. Journal of Cataract & Refractive Surgery, 2001, 27(10): 1703-1705.

[2] Wang Z Y, Ding H, Lu G J, et al. Use of a mechanical iris-based fiber optic probe for spatially offset Raman spectroscopy[J]. Optics Letters, 2014, 39(13): 3790-3793.

[3] 崔建国, 王润诗, 袁 伟, 等. 液体透镜研究现状与展望[J]. 重庆理工大学学报(自然科学版), 2016, 30(11): 105-110.

    Cui Jianguo, Wang Runshi, Yuan Wei, et al. Liquid lens research status and prospects[J]. Journal of Chongqing University of Technology (Natural Science), 2016, 30(11): 105-110.

[4] 王 迪, 李芳转, 王琼华, 等. 一种基于液体透镜的全息色差补偿方法[J]. 中国激光, 2015, 42(5): 0509001.

    Wang Di, Li Fangzhuan, Wang Qionghua, et al. A method of holographic chromatic aberration compensation based on a liquid lens[J]. Chinese J Lasers, 2015, 42(5): 0509001.

[5] 潘文强, 李湘宁, 卢 山, 等. 液体透镜变焦系统高斯理论分析[J]. 光学学报, 2016, 36(12): 1222003.

    Pan Wenqiang, Li Xiangning, Lu Shan, et al. Gauss theoretical analysis of liquid crystal lens zoom system[J]. Acta Optica Sinica, 2016, 36(12): 1222003.

[6] Calixto S, Sánchez-Morales M E, Sánchez-Marin F J, et al. Optofluidic variable focus lenses[J]. Applied Optics, 2009, 48(12): 2308-2314.

[7] Wang D, Liu C, Li L, et al. Adjustable liquid aperture to eliminate undesirable light in holographic projection[J]. Optics Express, 2016, 24(3): 2098-2105.

[8] 孙志文, 谢二庆, 韩卫华, 等. 电润湿的研究进展[J]. 液晶与显示, 2008, 23(3): 387-392.

    Sun Zhiwen, Xie Erqing, Han Weihua, et al. Progress of electrowetting[J]. Chinese Journal of Liquid Crystals and Displays, 2008, 23(3): 387-392.

[9] 唐 彪, 赵 青, 周 敏, 等. 电润湿动力学描述及其非稳态研究进展[J]. 华南师范大学学报(自然科学版), 2016, 48(1): 35-41.

    Tang Biao, Zhao Qing, Zhou Min, et al. Research progress in electrowetting dynamics and its instability[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(1): 35-41.

[10] 凌明祥. 基于介电润湿效应的微液滴操控研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    Ling Mingxiang. Research on manipulation and control of droplets based on electrowetting on dielectric[D]. Harbin: Harbin Institute of Technology, 2011.

[11] 朱喜霞. 基于电介质上的电润湿现象研究[J]. 制造业自动化, 2009, 31(8): 173-175.

    Zhu Xixia. The research on the phenomenon of the EWOD[J] .Manufacturing Automation, 2009, 31(8): 173-175.

[12] 赵 辉. 介电泳和介电润湿技术装置的设计与应用[D]. 南京: 东南大学, 2012.

    Zhao Hui. Design and application of dielectrophoresis and dielectric wetting technology[D]. Nanjing: Southeast University, 2012.

[13] 赵 瑞, 田志强, 刘启超, 等. 介电润湿液体光学棱镜[J]. 光学学报, 2014, 34(12): 1223003.

    Zhao Rui, Tian Zhiqiang, Liu Qichao, et al. Optical prism of dielectric wetting liquid[J]. Acta Optica Sinica, 2014, 34(12): 1223003.

[14] Muller P, Feuerstein R, Zappe H. Integrated optofluidic iris[J]. Journal of Microelectromechanical Systems, 2012, 21(5): 1156-1164.

[15] Müller P, Feuerstein R, Zappe H. A fully integrated optofluidic micro-iris[C]. Micro Electro Mechanical Systems, 2012: 7-10.

[16] Li L, Liu C, Ren H W, et al. Adaptive liquid iris based on electrowetting[J]. Optics Letters, 2013, 38(13): 2336-2338.

[17] 李显歌, 白鹏飞, 水玲玲, 等. Teflon AF1600作为电润湿显示器件疏水绝缘层的可靠性研究[J]. 华南师范大学学报(自然科学版), 2015, 47(2): 17-20.

    Li Xiange, Bai Pengfei, Shui Lingling, et al. The reliability of electrofluidic display devices based on Teflon AF1600[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(2): 17-20.

[18] Yu C C, J Ho J R, John Cheng J W. Tunable liquid iris actuated using electrowetting effect[J]. Optical Engineering, 2014, 53(5): 057106.

[19] Li L, Liu C, Wang Q H. Electrowetting-based liquid iris[J]. IEEE Photonics Technology Letters, 2013, 25(10): 989-991.

[20] Li L, Wang Q H, Liu C, et al. Adaptive liquid iris for optical switch[J]. Optical Engineering, 2014, 53(4): 047105.

[21] Schuhladen S, Banerjee K, Stürmer M, et al. Variable optofluidic slit aperture[J]. Light: Science & Applications, 2016, 5(1): e16005.

[22] Xu S, Ren H W, Wu S T. Dielectrophoretically tunable optofluidic devices[J]. Journal of Physics D: Applied Physics, 2013, 46(48): 483001.

[23] Yang C C, Yang L, Tsai C G, et al. Fully developed contact angle change of a droplet in liquid actuated by dielectric force[J]. Applied Physics Letters, 2012, 101(18): 182903.

[24] Ren H W, Xu S, Ren D Q, et al. Novel optical switch with a reconfigurable dielectric liquid droplet[J]. Optics Express, 2011, 19(3): 1985-1990.

[25] Luo Z Y, Xu S, Gao Y T, et al. Quantum dots enhanced liquid displays[J]. Journal Display Technology, 2014, 10(12): 987-990.

[26] Xu M, Ren H W, Lin Y H. Electrically actuated liquid iris[J]. Optics Letters, 2015, 40(5): 831-834.

[27] Tsai C G, Yeh J A. Circular dielectric liquid iris[J]. Optics Letters, 2010, 35(14): 2484-2486.

[28] Chang J H, Jung K D, Lee E, et al. Variable aperture controlled by microelectrofluidic iris[J]. Optics Letters, 2013, 38(15): 2919-2922.

[29] Chang J, Jung K D, Lee E, et al. Microelectrofluidic iris for variable aperture[C]. SPIE, 20128252: 82520O.

[30] Oh S H, Seo J H, Jeon J P, et al. Liquid lens based on electromagnetic actuation for high-performance miniature cameras[C]. Anchorage: 2015 Transducers-2015 18th International Conference on Solid-State Sensors, 2015: 2077-2080.

[31] Seo H W, Chae J B, Honga S J, et al. Electromagnetically driven liquid iris[J]. Sensors and Actuators A: Physical, 2015, 231: 52-58.

[32] Jang D, Jeong J W, Lee D Y, et al. Electromagnetically driven liquid iris[C]. APS Division of Fluid Dynamics, 2016.

[33] Seo H W, Chae J B, Hong S J, et al. A tunable optical iris based on electromagnetic actuation for a high-performance mini/micro camera[C]. San Francisco: 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems, 2014: 1147-1150.

[34] Yu H B, Zhou G Y, Chau F S, et al. Optofluidic variable aperture[J]. Optics Letters, 2008, 33(6): 548-550.

[35] Song C L, Nguyen N T, Asundi A K, et al. Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure[J]. Optics Letters, 2011, 36(10): 1767-1769.

[36] Schadt M, Helfrich W. Voltage-dependent optical activity of a twisted nematic liquid crystal[J]. Applied Physics Letters, 1971, 18(4): 127-128.

[37] Zhou Z W, Ren H W, Nah C W. Adaptive liquid crystal iris[J]. Japanese Journal of Applied Physics, 2014, 53(9): 092201.

[38] Muller P, Spengler N, Zappe H, et al. An optofluidic concept for a tunable micro-iris[J]. Journal of Microelectromechanical Systems, 2010, 19(6): 1477-1484.

吕红艳, 崔建国, 刘盛雄, 孙中杰, 蒲山山, 谢亮. 光流体可变光圈的研究现状[J]. 激光与光电子学进展, 2017, 54(9): 090002. Lü Hongyan, Cui Jianguo, Liu Shengxiong, Sun Zhongjie, Pu Shanshan, Xie Liang. Research Status of Optofluidic Variable Aperture[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!