光子学报, 2014, 43 (8): 0816002, 网络出版: 2014-09-01  

Co-Cr共掺杂金红石型TiO2电子结构和光学性质的第一性原理研究

The First-Principles Study of Electronic and Optical Properties of Co-Cr Co-doped Rutile TiO2
作者单位
1 西安理工大学 材料学院, 西安 710048
2 宝鸡文理学院 物理与信息技术系, 陕西 宝鸡 721016
3 西北工业大学 理学院, 西安 710072
摘要
基于密度泛函理论, 采用第一性原理赝势平面波方法计算了Co、Cr单掺杂以及Co-Cr共掺杂金红石型TiO2的能带结构、态密度和光学性质. 计算结果表明: 纯金红石的禁带宽度为3.0 eV, Co掺杂金红石型TiO2的带隙为1.21 eV, 导带顶和价带底都位于G点处, 仍为直接带隙, 在价带与导带之间出现了由Co 3d和Ti 3d轨道杂化形成的杂质能级;Cr掺杂金红石型TiO2的直接带隙为0.85 eV, 在价带与导带之间的杂质能级由Cr 3d和Ti 3d轨道杂化轨道构成, 导带和价带都向低能级方向移动;Co-Cr共掺杂, 由于电子的强烈杂化, 使O-2p态和Ti-3d 态向 Co-3d 和 Cr-3d态移动, 使价带顶能级向高能级移动而导带底能级向低能方向移动, 极大地减小了禁带的宽度, 也是共掺杂改性的离子选择依据. 掺杂金红石型TiO2的介电峰、折射率和吸收系数峰都向低能方向移动;在E<2.029 eV的范围内, 纯金红石的ε2、k和吸收系数为零, 掺杂后的跃迁强度都大于未掺杂时的跃迁强度, Co-Cr共掺杂的跃迁强度大于Co掺杂及Cr掺杂, 说明Co、Cr共掺杂更能增强电子在低能端的光学跃迁, 具有更佳的可见光催化性能.
Abstract
Based on the density functional theory, using the first principles pseudopotential plane wave method to calculate Co, Cr doped and Co, Cr Co doped rutile TiO2 band structure, density of States and optical properties. The results show that: the band gap of pure rutile is 3.00 eV, Co doped rutile TiO2 band gap of 1.21 eV, the conduction band and valence band top bottom are located in the G spot, is a direct band gap between the valence and conduction band, the impurity level by Co 3d and Ti 3d hybridization; Cr doped rutile TiO2 direct band gap of 0.85 eV, the impurity levels between the valence and conduction band by Cr 3d and Ti 3D orbital track structure, the conduction and valence bands are moving toward low level direction, Also, it is doping modification of ion selective basis; Due to the strong hybrid electron, make the O-2p state and the Ti-3d state to the Co-3d state and Cr-3d mobile of Co-Cr Co-doped, the valence band energy shifts to a higher energy level and the bottom of the conduction band energy level shift to lower energy, so greatly reducing the band gap width. The dielectric peak doped rutile TiO2, refractive index and absorption coefficient all shift to lower energy; In the range of E<2.029 eV, pure rutile imaginary part of dielectric function, k and absorption coefficient is zero, the transition strength after doping is higher than the transition intensity of undoped zno, Transition intensity of Co, Cr Co-doped is greater than Co doped and Cr doped, Co, Cr Co-doped can strengthen the electron optical transitions in the low end, visible light catalytic performance has better.
参考文献

[1] TAYLOR J G, SMITH H G, NICKLOW R M, et a1. Lattice dynamics of rutile[J]. Physical Review B, 1971, 3(10): 3457-3472.

[2] TAO Jun-guang, YANG Mei, CHAI Jin-wei, et al. Atomic N modified rutile TiO2 (110) surface layer with significant visible light photoactivity[J]. Journal of Physical Chemistry C, 2014, 118(2): 994-1000.

[3] WANG Ya-qing, ZHANG Rui-rui, LI Jian-bao, et al. First-principles study on transition metal-doped anatase TiO2[J]. Nanoscale Research Letters, 2014, 9(1): 46.

[4] LIU Hao, ZHANG Hai-ru, YANG Hong-min. Photocatalytic removal of nitric oxide by multi-walled carbon nanotubes supported TiO2[J]. Chinese Journal of Catalysis, 2014, 35(1): 66-77.

[5] MOLINARI A, AMADELLI R, ANTOLINI I, et al. Phororedox and photocatalytic processes on Fe(III)-porphyrin surface modified nanocrystalline TiO2[J]. Journal of Molecular Catalysis A: Chemical, 2000, 158(2): 521-531.

[6] JONES F H. Teeth and bons: applicatiobs of surface science to dental material and selated biomaterias[J]. Surface Science Reports, 2001, 42(3/4/5): 75-205.

[7] GENG W T, KIM K S. Interplay of local structure and magnetism in Co-doped TiO2 anatase[J]. Solid State Communications, 2004, 129(11): 741-746.

[8] KALLEL W, BOUATTOUR S, KOLSI A W. Structural and conductivity study of Y and Rb co-doped TiO2 synthesized by the sol–gel method[J]. Journal of Non-Crystalline Solids, 2006, 352(38–39): 3970-3978.

[9] HAN G C, LUO P, GUO Z B, et al. Co-doped TiO2 epitaxial thin films grown by sputtering[J]. Thin Solid Films, 2006, 505(1-2): 137-140.

[10] 张德恺, 胡晓云, 李婷, 等. TiO2纳米薄膜微观结构及光学性能研究[J]. 光子学报, 2004, 30(8): 982-985.

    ZHANG De-kai, HU Xiao-yun, LI Ting, et al. Study on the microstructure and the optical capability of the nano-TiO2 film[J]. Acta Photonica Sinica, 2004, 30(8): 982-985.

[11] 赖发春, 林丽梅, 瞿燕. 反应磁控溅射制备TiO2和Nb2O5混合光学薄膜[J]. 光子学报, 2006, 35(10): 1551-1554.

    LAI Fa-chun, LIN Li-mei, QU Yan. Preparation of the TiO2 and Nb2O5 mixed optical film[J]. Acta Photonica Sinica, 2006, 35(10): 1551-1554.

[12] 张永伟, 殷春浩, 赵强, 等. TiO2电子结构与其双折射性、各项异性关联的理论研究[J]. 物理学报, 2012, 61(2): 027801.

    ZHANG Yong-wei, YIN Chun-hao, ZHAO Qiang, et al. Theoretical research of correlation of electro structure with birefringence and anisotropy of TiO2[J]. Acta Physica Sinica, 2012, 61(2): 027801.

[13] YU Jing-xin, FU Ming, JI Guang-fu, et a1. Phase transition and thermodynamic properties of TiO2 from first-principles calculations[J]. Chinese. Physics B, 2009 , 18(1): 269-274.

[14] 林峰,郑法伟,欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究[J]. 物理学报, 2009, 58(S1): 193-198.

    LIN Feng, ZHENG Fa-wei, OUYANG Fang-ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface[J]. Acta Physica Sinica, 2009, 58(S1): 193-198.

[15] 刘国敬, 胡晓云, 潘静, 等. 纳米二氧化钛的制备及Eu3+掺杂发光研究[J]. 光子学报, 2010, 39(9): 1548-1551.

    LIU Guo-jing, HU Xiao-Yun, PAN Jing, et al. Preparation and luminescence properties of Eu3+ Doped TiO2 nano-powder[J]. Acta Photonica Sinica, 2010, 39(9): 1548-1551.

[16] GAO G Y, YAO K L, LIU Z L, et al. Magnetism and electronic structure of Cr-doped rutile TiO2 from first-principles calculations[J]. Journal of Magnetism and Magnetic Materials, 2007, 313(1): 210-213.

[17] 杨志怀, 张云鹏, 康翠萍,等. Y-Nb共掺杂金红石型TiO2电子结构和光学性质的第一性原理研究[J]. 宝鸡文理学院学报(自然科学版), 2014, 34(1): 1-8.

    YANG Zhi-huai, ZHANG Yun-peng, KANG Cui-ping, et al. The first-principles study of electronic and optical properties of Y-Nb Co-doped rutile TiO2[J]. Journal of Baoji University of Arts and Science(Natural Science), 2014, 34(1): 1-8.

[18] YANG Xiang-xin, CAO Chun-di, KEITH H, et al. Highly visible-light active C-and V-doped TiO2 for degradation of acetaldehyde[J]. Journal of Catalysis, 2007, 252(2): 296-302.

[19] SATO S. Photocatalytic activity of NOx-doped TiO2 in the visible light region[J]. Chemical Physics Letters, 1986, 123(1/2): 126-128.

[20] IRIE H, WATANABE Y, HASHIMOTO K. Carbon-doped anatase TiO2 powder as a visible-light sensitive photocatalyst[J]. Chemical Letter, 2003, 32(8): 772-773.

[21] HONG Xiao-ting, WANG Zheng-ping, CAI Wei-min, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide[J]. Chemical Materials, 2005, 17(6): 1548-1552.

[22] IRIE H, WATANABE Y, HASHIMOTO K. Nitrogen-concentration dependence on photocatalytic acttivity of TiO2-xNx powders[J]. Journal of Physical Chemistry, 2003, 107(23): 5483-5486.

[23] 赵宗颜, 柳清菊, 朱忠其, 等. S掺杂对锐钛矿相TiO2电子结构与光催化性能的影响[J]. 物理学报, 2008, 57(6): 3760-3769.

    ZHAO Zong-yan, LIU Qing-ju, ZHU Zhong-qi, et al. Effects of S doping on electronic structures and photocatalytic properties of anatase TiO2[J]. Acta Physica Sinica, 2008, 57(6): 3760-3769.

[24] CHOI Y, UMEBAYASHI T, YOSHIKAWA M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts[J]. Journal Mater Seience, 2004, 39(5): 1837-1839.

[25] YAMAKI T, SUMITA T, YAMAMOTO S. Formation of TiO2-xFx compounds in fluorine-TiO2[J]. Journal of Mater Science Letters, 2002, 21(1): 33-35.

[26] NGUYEN V H, NGUYEN V D, PHAM T H, et a1. Inclusion of SWCNTs in Nb/Pt co-doped TiO2 thin-film sensor for ethanol vapor detection[J]. Physica E: Low-dimensional Systems and Nanostructures, 2008, 40(9): 2950-2958.

[27] FAN Xiao-xing, CHEN Xin-yi, ZHU Shao-peng et al. The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2[J]. Journal of Molecular Catalysis A: Chemical, 2008, 284(1-2): 155-160.

[28] LIU Shao-You, TANG Qun-Li, FENG Qing-Ge. Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route[J]. Applied Surface Science, 2011, 257(13): 5544-5551.

[29] CRISTIANA D V, GIANFRANCO P, HIROSHI O, et a1. Cr/Sb co-doped TiO2 from first principles calculations[J]. Chemical Physics Letters, 2009, 469(1-3): 166-171.

[30] MI W B, JIANG E Y, BAI H L. Structure, magnetic and optical properties of polycrystalline Co-doped TiO2 films[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(16): 2472-2476.

[31] BIAN Liang, SONG Mian-xin, ZHOU Tian-liang, et al. Band gap calculation and photo catalytic activity of rare earths doped rutile TiO2[J]. Journal of Rare Earths, 2009, 27(3): 461-468.

[32] CHEN Qi-li, TANG Chao-qun, ZHENG Guang. First-principles study of anatase (1 0 1) surfaces doped with N[J]. Physica B: Condensed Matter, 2009, 404(8-11): 1074-1078.

[33] DIANA M, FELICIA I, NICOLETA C, et al. Undoped and Cr-doped TiO2 thin films obtained by spray pyrolysis[J]. Thin Solid Films, 2010, 518(16): 4586-4589.

[34] RUN L, NIALL J E. Electronic properties of F/Zr co-doped anatase TiO2 photocatalysts from GGA+U calculations[J]. Chemical Physics Letters, 2010, 498(4-6): 338-344.

[35] THIENPRASERT J T, KLAITHONG S, NILTHARACH A, et a1. Local structures of cobalt in Co-doped TiO2 by synchrotron X-ray absorption near edge structures[J]. Current Applied Physics, 2011, 11(3): S279-S284.

[36] DIANA M, VALENTIN N, VALENTIN P, et al. X-ray absorption fine structure investigations on heat-treated Cr-doped titania thin films[J]. Thin Solid Films, 2011, 520(4): 1348-1352.

[37] MENG Xiu-qing, HAN Cong, WU Feng-min, et al. Er3+-Yb3+ co-doped TiO2 nanoparticles embedded in amorphous matrix with strong up-conversion emissions[J].Journal of Alloys and Compounds, 2012, 536(25): 210-213.

[38] TIAN Bao-zhu, LI Chun-zhong, ZHANG Jin-long. One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases[J]. Chemical Engineering Journal, 2012, 191(15): 402-409.

[39] LIU Yi-ming, LIANG Wei, ZHANG Wang-gang, et al. First principle study of Cu N, Cu and N-doped anatase TiO2[J]. Solid State Communications, 2013, 164: 27-31.

[40] DAN X, YAO K L, GAO G Y, et al. Electronic and optical properties of N-doped, Co-doped as well as N, Co-codoped rutile TiO2[J]. Journal of Magnetism and Magnetic Materials, 2013, 335: 118-124.

[41] ANDREAS M, CHRISTIAN L, SNEJANA B, et a1. Characterisation, phase stability and surface chemical properties of photocatalytic active Zr and Y co-doped anatase TiO2 nanoparticles[J]. Journal of Solid State Chemistry, 2013, 199: 212-223.

[42] 郑树凯, 吴国浩, 王芳, 等. Si掺杂锐钛矿相TiO2的电子能带结构[J]. 中国粉体技术, 2012, 18(6): 36-38.

    ZHENG Shu-kai, WU Guo-hao, WANG Fang, et al. Electronic energy band structure of Si doped anatase TiO2[J]. China Powder Science and Technology, 2012, 18(6): 36-38.

杨志怀, 张云鹏, 康翠萍, 张蓉, 张美光. Co-Cr共掺杂金红石型TiO2电子结构和光学性质的第一性原理研究[J]. 光子学报, 2014, 43(8): 0816002. YANG Zhi-huai, ZHANG Yun-peng, KANG Cui-ping, ZHANG Rong, ZHANG Mei-guang. The First-Principles Study of Electronic and Optical Properties of Co-Cr Co-doped Rutile TiO2[J]. ACTA PHOTONICA SINICA, 2014, 43(8): 0816002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!