中国激光, 2013, 40 (12): 1204003, 网络出版: 2013-11-19   

基于压缩感知的荧光显微多光谱成像 下载: 521次

Multispectral Fluorescence Microscopic Imaging Based on Compressive Sensing
作者单位
浙江大学现代光学仪器国家重点实验室, 浙江 杭州 310027
摘要
将压缩感知(CS)理论应用于荧光显微成像,设计搭建了一套新型的显微成像系统。使用液晶光阀实现待测图像到随机光斑的线性投影,以单点探测进行荧光信号采集,结合CS信号重构理论得到样品图像。采样数远低于Nyquist-Shannon定理要求的次数,成像过程无需扫描,系统结构简单。相对于传统的更换滤光片和光栅扫描成像的光谱成像模式,该系统仅需使用光谱仪采集信号、对光谱分波段计算即可得到荧光样品的多光谱图像。荧光显微成像过程中存在荧光衰减的影响,实验中对数据进行强度归一化预处理,结果表明该处理方法有效消除了荧光衰减对图像重构的影响。
Abstract
Compressive sensing (CS) theory is used in fluorescence microscopy imaging and a new microscopic imaging system is designed and implemented. A liquid crystal light valve is employed to calculate the linear projection of an image onto pseudorandom patterns. Fluorescence is collected on a point detector. Images of the samples are acquired combined with the reconstruction theory of CS. The number of samples is smaller than that imposed by the Nyquist-Shannon theorem. The system hardware is simple as scanning is unnecessary during the imaging process. Compared with the traditional spectral imaging modalities, such as using optical filter and raster scanning, this system only needs a spectrometer to acquire signal and then multispectral images are reconstructed from measurements corresponding to a set of sub-bands. As the fluorescence microscopy imaging suffers fluorescence decay during imaging process, in this experiment, data preprocessing such as intensity normalization is applied and the results indicate that the influence of fluorescence decay on reconstruction is eliminated effectively with this processing method.
参考文献

[1] E Candès, J Romberg, T Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans Information Theory, 2006, 52(2): 489-509.

[2] E Candès, T Tao. Near optimal signal recovery from random projections and universal encoding strategies[J]. IEEE Trans Information Theory, 2006, 52(12): 5406-5425.

[3] D Donoho. Compressed sensing[J]. IEEE Trans Information Theory, 2006, 52(4): 1289-1306.

[4] J Yoo, S Becker, M Monge, et al.. Design and implementation of a fully integrated compressed-sensing signal acquisition system[C]. IEEE Int Conf Acoustics, Speech and Signal Processing, 2012. 5325-5328.

[5] M Mishali, Y C Eldar, O Dounaevsky, et al.. Xampling: analog to digital at sub-Nyquist rates[J]. IET Cir Dev & Systems, 2011, 5(1): 8-20.

[6] J Bolin, J L Starck, R Ottensamer. Compressed sensing in astronomy[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(5): 718-726.

[7] 吴迎春, 吴学成, 王智化, 等. 压缩感知重建数字同轴全息[J]. 光学学报, 2011, 31(11): 1109001.

    Wu Yingchun, Wu Xuecheng, Wang Zhihua, et al.. Reconstruction of digital inline hologram with compressed sensing[J]. Acta Optica Sinica, 2011, 31(11): 1109001.

[8] M Lustig, D Donoho, J M Pauly. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.

[9] J Trzasko, A Manduca. Highly undersampled magnetic resonance image reconstruction via homotopic 0 minimization[J]. IEEE Trans Medical Imaging, 2009, 28(1): 106-121.

[10] V Studer, J Bolin, M Chahid. Compressive fluorescence microscopy for biological and hyperspecreal imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 109(26): 1679-1687.

[11] 王岩, 李恒, 齐璟, 等. 基于扫描相机的时域荧光寿命测量及分析[J]. 中国激光, 2011, 38(s1): s108001.

    Wang Yan, Li Heng, Qi Jing, et al.. Time-domain fluorescence lifetime measurement and analysis using a streak camera[J]. Chinese J Lasers, 2011, 38(s1): s108001.

[12] L Song, E J Hennink, T Young, et al.. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy[J]. Biophys J, 1995, 68(6): 2588-2600.

[13] 陆明海, 沈夏, 韩申生. 基于数字微镜器件的压缩感知关联成像研究[J]. 光学学报, 2011, 31(7): 0711002.

    Lu Minghai, Shen Xia, Han Shensheng. Ghost imaging via compressive sampling based on digital micromirror device[J]. Acta Optica Sinica, 2011, 31(7): 0711002.

[14] E Candès, M Wakin. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.

[15] R Baraniuk. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-124.

[16] D Takhar, J N Laska, M B Wakin, et al.. A new compressive imaging camera architecture using optical-domain compression[C]. SPIE, 2008, 6065: 606509.

[17] 陈靖, 王涌天. 压缩成像技术研究进展[J]. 激光与光电子学进展, 2012, 49(3): 030002.

    Chen Jing, Wang Yongtian. Research of the compressive imaging technology[J]. Laser & Optoelectronics Progress, 2012, 49(3): 030002.

[18] 张硕, 王杰, 王金成, 等. 基于压缩感知的三维物体成像的简单计算方法[J]. 光学学报, 2013, 33(1): 0111004.

    Zhang Shuo, Wang Jie, Wang Jincheng, et al.. A simple calculation method for 3D imaging based on CS[J]. Acta Optica Sinica, 2013, 33(1): 0111004.

王金成, 匡翠方, 王轶凡, 刘旭. 基于压缩感知的荧光显微多光谱成像[J]. 中国激光, 2013, 40(12): 1204003. Wang Jincheng, Kuang Cuifang, Wang Yifan, Liu Xu. Multispectral Fluorescence Microscopic Imaging Based on Compressive Sensing[J]. Chinese Journal of Lasers, 2013, 40(12): 1204003.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!