光学与光电技术, 2023, 21 (6): 0106, 网络出版: 2024-02-29  

用于加速度计的硅基拉链光子晶体腔光机系统

Silicon-Based Zipper Photonic Crystal Cavity Optomechanical System for Accelerometers
作者单位
华中光电技术研究所- 武汉光电国家研究中心, 湖北 武汉 430223
摘要
基于光子晶体微腔的腔光机加速度计将机械谐振子及高品质因数光子晶体腔相结合, 其中的机械振子在机械震荡模式下对微弱力/位移敏感的特性, 可以实现极低的噪声水平, 理论上能够达到标准量子噪声极限, 是高精度加速度计的重要发展方向。对拉链式光子晶体腔光机加速度计的原理和结构特点进行分析, 设计了一种应用于加速度计的硅基拉链式光子晶体腔和机械振子结构。分析了拉链腔的结构参数对光学Q值的影响, 通过调节结构参数将光腔的谐振频率控制在195 THz附近, 并分析了机械振子和光腔的机械谐振特性, 光腔的有效质量为 30 pg, 加上机械振子后有效质量为3.1 ng, 光机耦合率达到GHz/nm量级, 为基于硅基拉链腔加速度计的制造和表征提供了指导。
Abstract
The optomechanical cavity accelerometer based on photonic crystal microcavity combines the mechanical resonator with the high-quality factor photonic crystal cavity, and the mechanical vibrator is sensitive to weak force/displacement in the mechanical vibration mode, which can achieve extremely low noise level and theoretically reach the standard quantum noise limit, which is an important direction for the development of high-precision accelerometer. This paper analyzes the principle and structural characteristics of the zipper type photonic crystal cavity optical-mechanical accelerometer, and designs a silicon-based zipper type photonic crystal cavity and mechanical vibrator structure for accelerometer. The influence of the structural parameters of the zipper cavity on the optical Q factor is analyzed in detail. The resonant frequency of the optical cavity is controlled around 195 THz by adjusting the structural parameters, and the mechanical resonance characteristics of the mechanical vibrator and the optical cavity are analyzed. The effective mass of the optical cavity is 30 pg, plus the effective mass of the mechanical vibrator is 3.1 ng, and the opto-mechanical coupling rate reaches the order of GHz/nm, which provides guidance for the manufacture and characterization of the silicon-based zipper cavity accelerometer.
参考文献

[1] 陶新, 欧卫林, 何文波. 光栅式双层悬臂梁结构设计与闭环反馈控制[J]. 光学与光电技术, 2021, 19(4): 45-54.TAO Xin, OU Wei-lin, HE Wen-bo. Grating-based double-layer cantilever structure design and closed-loop feedback control[J]. Optics & Optoelectronic Technology, 2021, 19(4): 45-54.

[2] Y Li, Q Zheng, Y Hu, et al. Micromachined piezoresistive accelerometers based on an asymmetrically[J]. Journal of Microelectromechanical Systems, 2011, 20(1): 83-94.

[3] Y Xu, L Zhao, Z Jiang, et al. A novel piezoresistive accelerometer with spbs to improve the tradeoff between the sensitivity and the resonant frequency[J]. Sensors (Basel), 2016, 16(2): 210.

[4] K Hari, S K Verma, I R Praveen Krishna, et al. Out-of-plane dual flexure mems piezoresistive accelerometer with low cross axis sensitivity[J]. Microsystem Technologies, 2017, 24(5): 2437-2444.

[5] C Jia, Q Mao, G Luo, et al. Novel high-performance piezoresistive shock accelerometer for ultra-high-g measurement utilizing self-support sensing beams[J]. Rev Sci Instrum, 2020, 91(8): 085001.

[6] O Aydin, T Akin. A bulk-micromachined fully differential mems accelerometer with split interdigitated fingers[J]. IEEE Sensors Journal, 2013, 13(8): 2914-2921.

[7] H Xu, X Liu, L Yin. A closed-loop σδ interface for a high-q micromechanical capacitive accelerometer with 200 ng/[Hz] input noise density[J]. IEEE Journal of Solid-State Circuits, 2015, 50(9): 2101-2112.

[8] S Kavitha, R Joseph Daniel, K Sumangala. Design and analysis of mems comb drive capacitive accelerometer for shm and seismic applications[J]. Measurement, 2016, 93: 327-339.

[9] Wei Xue, J Wang, T Cui. Highly sensitive micromachined tunneling sensors[J]. Optics and Precision Engineering, 2004, 12(5): 491-503.

[10] V Kumar, X Guo, S Pourkamali. Single-mask field emission based tunable mems tunneling accelerometer[C]. 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), 2015, 755-758.

[11] B Yang, B Wang, H Yan, et al. Design of a micromachined z-axis tunneling magnetoresistive accelerometer with electrostatic force feedback[J]. Micromachines (Basel), 2019, 10(2): 158.

[12] B Yang, X Gao, C Li. A novel micromachined z-axis torsional accelerometer based on the tunneling magnetoresistive effect[J]. Micromachines (Basel), 2020, 11(4): 422.

[13] ZANDI K, BELANGER J A, PETER Y-A. Design and demonstration of an In-plane silicon-on-insulator optical MEMS Fabry-Pérot-based accelerometer integrated with channel waveguides[J]. J Microelectromech S, 2012, 21(6): 1464-70.

[14] A Stefani, S Andresen, W Yuan, et al. High sensitivity polymer optical fiber-bragg-grating-based accelerometer[J]. IEEE Photonics Technology Letters, 2012, 24(9): 763-765.

[15] A R Ali. Micro-optical vibrometer/accelerometer using dielectric microspheres[J]. Appl. Opt., 2019, 58(16): 4211-4219.

[16] J D Teufel, T Donner, M A Castellanos-Beltran, et al. Nanomechanical motion measured with an imprecision below that at the standard quantum limit[J]. Nat Nanotechnol, 2009, 4(12): 820-822.

[17] Y W Hu, Y F Xiao, Y C Liu, et al. Optomechanical sensing with on-chip microcavities[J]. Frontiers of Physics, 2013, 8(5): 475-490.

[18] M Aspelmeyer, T J Kippenberg, F Marquardt. Cavity optomechanics[J]. Reviews of Modern Physics, 2014, 86(4): 1391-1452.

[19] B S Sheard, M B Gray, C M Mow-Lowry, et al. Observation and characterization of an optical spring[J]. Physical Review A, 2004, 69(5): 051801.

[20] R Riviere, S Deleglise, S Weis, et al. Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state[J]. Physical Review A, 2011, 83(6): 063835.

[21] R Horodecki, P Horodecki, M Horodecki, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865-942.

[22] A H Safavi-Naeini, T P Mayer Alegre, J Chan, et al. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 2011, 472(7341): 69-73.

[23] 沈平. 光纤传感[J]. 光学与光电技术, 2021, 19(2): 1-4. Perry Shum Ping. Optical fiber sensing[J]. Optics & Optoelectronic Technology, 2021, 19(2): 1-4.

[24] E Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters[J]. 1987, 58(20): 2059-2062.

[25] A Cucinotta, S Selleri, L Vincetti, et al. Holey fiber analysis through the finite-element method[J]. IEEE Photonics Technology Letters, 2002, 14(11): 1530-1532.

[26] K Saitoh, M Koshiba, S Member. Full-vectorial imaginary distance beam propagation method based on a finite element scheme: application to photonic crystal fibers[J]. IEEE Journal of Quantum Electron, 2002, 38(7): 927-933.

[27] 曾垂峰, 欧阳义国. 基于光机热集成分析的光学系统光轴稳定性研究[J]. 光学与光电技术, 2021, 19(6): 50-56. ZENG Chui-feng, OUYANG Yi-guo. Research on optical axis stability of optical system based on thermal-structural-optical integrated analysis[J]. Optics & Optoelectronic Technology, 2021, 19(6): 50-56.

[28] A G Krause, M Winger, T D Blasius, et al. A high-resolution microchip optomechanical accelerometer[J]. Nature Photonics, 2012, 6(11): 768-772.

[29] J Chan, M Eichenfield, R Camacho, et al. Optical and mechanical design of a zipper photonic crystal optomechanical cavity[J]. Optics Express, 2009, 17: 3802.

谭红宇, 姚远. 用于加速度计的硅基拉链光子晶体腔光机系统[J]. 光学与光电技术, 2023, 21(6): 0106. TAN Hong-yu, YAO Yuan. Silicon-Based Zipper Photonic Crystal Cavity Optomechanical System for Accelerometers[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(6): 0106.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!