中国激光, 2016, 43 (12): 1208001, 网络出版: 2016-12-09   

中心对称光折变晶体中Kagome型光格子内缺陷孤子的研究

Research on Defect Solitons in Kagome Photonic Lattices in Centrosymmetric Photorefractive Crystals
张宝菊 1,2,*卢克清 1,2赵冲 1,2高立许 1,2
作者单位
1 天津工业大学光电检测技术与系统天津市重点实验室, 天津 300387
2 天津工业大学电子与信息工程学院, 天津 300387
摘要
报道了中心对称光折变晶体中Kagome型光格子内缺陷孤子的存在及其稳定性。由于缺陷强度的变化,这些缺陷孤子能存在于不同的带隙内。当缺陷为正时,这些缺陷孤子只存在于半无限带隙内。利用扰动增长率和光波传播法,研究了这些缺陷孤子的稳定性。结果表明,通过扰动增长率和光波传播法得到这些缺陷孤子的稳定性是相同的,低功率正缺陷孤子是稳定的,高功率正缺陷孤子是不稳定的。当缺陷为负时,缺陷孤子存在于半无限带隙和第一带隙内。在半无限带隙内,中功率负缺陷孤子是稳定的,高功率和低功率负缺陷孤子是不稳定的。在第一带隙内,负缺陷孤子都是稳定的。
Abstract
Defect solitons and their stability are reported in Kagome photonic lattices in centrosymmetric photorefractive crystals. These defect solitons exist in different gaps due to the change of defect intensity. When the defect is positive, these defect solitons exist only in the semi-infinite gap. By using the perturbation growth rate and beam propagation method, the stability of these defect solitons is investigated. The analysis indicates that the stability of these defect solitons tested by the perturbation growth rate and beam propagation method is same, the positive defect solitons are stable in the low power region and unstable in the high power region. When the defect is negative, these defect solitons exist both in the semi-infinite gap and the first gap. Negative defect solitons in the semi-infinite gap are stable in the moderate power region and unstable in the high and low power regions. In the first gap, the negative defect solitons are always stable.
参考文献

[1] Segev M, Valley G C, Crosignani B, et al. Steady-state spatial screening solitons in photorefractive materials with external applied field[J]. Applied Physics Letters, 1994, 73(24): 3211-3214.

[2] 颜利芬, 王红城, 张冰志, 等. 光伏暗孤子和灰孤子的自偏转[J]. 物理学报, 2007, 56(8): 4627-4634.

    Yan Lifen, Wang Hongcheng, Zhang Bingzhi, et al. Self-deflection of dark and gray photovoltaic solitons[J]. Acta Physica Sinica, 2007, 56(8): 4627-4634.

[3] 李荣基, 佘卫龙, 王晓生, 等. 折射率改变为正的光折变晶体中形成一维光伏暗孤子[J]. 物理学报, 2001, 50(11): 2166-2171.

    Li Rongji, She Weilong, Wang Xiaosheng, et al. One-dimensional dark solitons in photovoltaic media with a positive perturbation refractive index[J]. Acta Physica Sinica, 2001, 50(11): 2166-2171.

[4] 卢克清, 张彦鹏, 唐天同, 等. 有偏压的光伏光折变晶体中屏蔽光伏孤子的自偏转[J]. 光学学报, 2002, 22(2): 134-138.

    Lu Keqing, Zhang Yanpeng, Tang Tiantong, et al. Self-deflection of steady-state spatial solitons in biased photorefractive-photovoltaic crystals[J]. Acta Optica Sinica, 2002, 22(2): 134-138.

[5] 李文慧, 忽满利, 马志博, 等. LiNbO3晶体中屏蔽光伏孤子自偏转的时空演化与可控因素[J]. 物理学报, 2012, 61(2): 020201.

    Li Wenhui, Hu Manli, Ma Zhibo, et al. Temporal evolution and controllable factors for self-deflection of screening photovoltaic solitons in LiNbO3 crystal[J]. Acta Optica Sinica, 2012, 61(2): 020201.

[6] 田宁, 卢克清, 张先锋, 等. 波导参数和传播常数对光折变表面波的影响[J]. 中国激光, 2012, 39(1): 0117002.

    Tian Ning, Lu Keqing, Zhang Xianfeng, et al. Influence of guiding parameters and propagation constants on photorefractive surface waves[J]. Chinese J Lasers, 2012, 39(1): 0117002.

[7] Zhang T H, Ren X K, Wang B H, et al. Surface waves with photorefractive nonlinearity[J]. Physical Review A, 2007, 76(1): 013827.

[8] 杨斌, 覃亚丽, 刘鲜, 等. 光诱导晶格中偶极孤子的研究[J]. 光学学报, 2016, 36(7): 0719001.

    Yang Bin, Qin Yali, Liu Xian, et al. Research on dipole solitons in optically-induced lattices[J]. Acta Optica Sinica, 2016, 36(7): 0719001.

[9] Efremidis N K, Hudock J, Christodoulides D N, et al. Two-dimensional optical lattice solitons[J]. Physical Review Letters, 2003, 91(21): 213906.

[10] Neshev D, Ostrovskaya E, Kivshar Y, et al. Spatial solitons in optically induced gratings[J]. Optics Letters, 2003, 28(9): 710-712.

[11] Yang J, Chen Z. Defect solitons in photoniclattices[J]. Physical Review E, 2006, 73(2): 026609.

[12] Zhu X, Wang H, Zheng L X. Defect solitons in Kagome optical lattices[J]. Optics Express, 2010, 18(20): 20786-20792.

[13] Chen W H, Zhu X, Wu T W, et al. Defect solitons in two-dimensional optical lattices[J]. Optics Express, 2010, 18(11): 10956-10961.

[14] Segev M, Shih M, Valley G C. Photorefractive screening solitons of high and low intensity[J]. Journal of Optical Society of America B, 1996, 13(4): 706-718.

[15] DelRe E, Crosignani B, Tambruuini M, et al. One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraeletric potassium lithium tantalate niobate[J]. Optics Letters, 1998, 23(6): 421-423.

[16] DelRe E, Tambruuini M, Segev M, et al. Two-dimensional photorefractive spatial solitons in centrosymmetric paraeletric potassium-lithium-tantalate-niobate[J]. Applied Physics Letters, 1998, 73(1): 16-18.

[17] 李斌, 孙秀冬, 侯春风, 等. 有外加电场的光伏光折变晶体中的非相干耦合亮-暗屏蔽光伏孤子对[J]. 物理学报, 2001, 50(9): 1709-1712.

    Li Bin, Sun Xiudong, Hou Chunfeng, et al. Incoherently coupled bright-dark screening-photovoltaic soliton pairs in biased photovoltaic photorefractive crystals[J]. Acta Physica Sinica, 2001, 50(9): 1709-1712.

[18] Chen W, Lu K, Hui J, et al. Localized surface waves at the interface between linear dielectric and biased centrosymmetric photorefractive crystals[J]. Optics Express, 2013, 21(13): 15595-15602.

[19] Ciattoni A, Marini A, Rizza C, et al. Collision and fusion of counterpropagating micrometer-sized optical beams in periodically biased photorefractive crystals[J]. Optics Letters, 2009, 34(7): 911-913.

[20] 吉选芒, 姚纪欢, 姜其畅, 等.低振幅中心对称光折变暗和灰空间孤子的时间特性[J]. 光学学报, 2011, 31(10): 1019001.

    Ji Xuanmang, Yao Jihuan, Jiang Qichang, et al. Temporal behavior of the low-amplitude dark and gray spatial solitons in centrosymmetric photorefractive media[J]. Acta Optica Sinica, 2011, 31(10): 1019001.

[21] Hao L, Hou C, Wang X, et al. Coherently coupled bright-bright screening soliton pairs in biased centrosymmetric photorefractive crystals[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(15): 5928-5934.

[22] Zhan K, Hou C. Gap solitons supported by optical lattices in biased centrosymmetric photorefractive crystals[J]. Optics Communications, 2012, 285(17): 3649-3653.

[23] Zhan K, Hou C, Hao T, et al. Spatial solitons in centrosymmetric photorefractive crystals due to the two-photo photorefractive effect[J]. Journal of Optics, 2010, 12(1): 015203.

[24] Boguslawski M, Rose P, Denz C. Nondiffracting Kagome lattices[J]. Applied Physics Letters, 2011, 98(6): 061111.

[25] Liu S, Lu K, Zhang Y, et al. Defect solitons in optically induced Kagome photonic lattices in photovoltaic-photorefractive crystals[J]. Optics Communications, 2014, 312: 258-262.

[26] Law K,Saxena A, Kevrekidis P G, et al. Localized structures in Kagome lattices[J]. Physical Review A, 2009, 79(5): 053818.

[27] Fleischer J W, Segev M, Efremidis N K, et al. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices[J]. Nature, 2003, 422(6928): 147-150.

[28] Yang J, Makasyuk I, Bezryadina A, et al. Dipole and quadrupole solitons in optically induced two-dimensional photonic lattices: Theory and experiment[J]. Stud Appl Math, 2004, 113(4): 389-412.

[29] Yang J,Lakoba T I. Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations[J]. Studies in Applied Mathematics, 2007, 118(2): 153-197.

[30] Yang J. Iteration methods for stability spectra of solitarywaves[J]. Journal of Computational Physics, 2008, 227(14): 6862-6876.

张宝菊, 卢克清, 赵冲, 高立许. 中心对称光折变晶体中Kagome型光格子内缺陷孤子的研究[J]. 中国激光, 2016, 43(12): 1208001. Zhang Baoju, Lu Keqing, Zhao Chong, Gao Lixu. Research on Defect Solitons in Kagome Photonic Lattices in Centrosymmetric Photorefractive Crystals[J]. Chinese Journal of Lasers, 2016, 43(12): 1208001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!