激光技术, 2018, 42 (5): 704, 网络出版: 2018-09-11   

一种基于等离子体超材料的吸波器设计

Design of an absorber based on plasma metameterial
作者单位
南京邮电大学 电子与光学工程学院 光电信息科学与工程系, 南京 210023
引用该论文

张浩, 章海锋, 杨靖, 刘佳轩. 一种基于等离子体超材料的吸波器设计[J]. 激光技术, 2018, 42(5): 704.

ZHANG Hao, ZHANG Haifeng, YANG Jing, LIU Jiaxuan. Design of an absorber based on plasma metameterial[J]. Laser Technology, 2018, 42(5): 704.

参考文献

[1] PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theroy and Techniques, 1999, 47(11): 2075-2084.

[2] SMITH D R , PADILLA W J , VIER D C, et al. Composite medium with simulataneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187.

[3] SMITH D R, SCHURING D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors[J]. Physical Review Letters, 2003,90(7): 077405.

[4] JAEYOUN K, RICHARD S, WALTER R B. Multi-peak electromagnetically induced transparency(EIT)-like transmission from bull’s-eye-shaped metamateria[J]. Optics Express, 2010, 18(17): 17997-18002.

[5] ALEXANDER A Z, VLADISLAV V K. Giant resonant mageto-optic Kerr effect in nanostructured ferromagnetic metamaterial[J]. Journal of Applie Physics, 2007, 102(12): 123514.

[6] HU Y H, WEN S C, ZHUO H, et al. Focusing properties of Gaussian beams by a slab of Kerr-type lefthanded metamaterial[J]. Optics Express, 2008, 16(7): 4774-4784.

[7] VESELAGO V G. The electrodynamics of substances with simulaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

[8] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292 (5514): 77-79.

[9] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.

[10] FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a sliver superlens[J]. Science, 2005, 308(5721): 534-537.

[11] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

[12] LIU Y W, WANG X H, DONG Z D, et al. Tunable electromagnetic cloaking by external field[J]. Transactions of Nanjing University of Aeronzutics & Astronautics, 2014, 31(3): 241-248.

[13] YIN Q T, YAO G, SHI S J, et al. Study on transparency structure induced by tunable teraherz plasmon[J]. Laser Technology, 2017, 41(6): 826-830 (in Chinese).

[14] LANDY N I, SAIUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

[15] TAO H, LANDY N I, BINGHAM C M, et al. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization [J]. Optics Express, 2008, 16(10): 7181-7188.

[16] DAYAL G, RAMAKRISHNA S A. Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks[J]. Journal of Optics, 2013, 15(5): 527-535.

[17] RUFANGURA P, SABAH C. Dual-band perfect metamaterial absorber for solar cell applications[J]. Vacuum, 2015, 120(B): 68-74.

[18] SHAN Y, CHEN L, SHI C, et al. Ultrathin flexible dual band terahertz absorber[J]. Optics Communications, 2015, 350: 63-70.

[19] MO M M, WEN Q Y, CHEN Zh, et al. Strong and broadband terahertz absorber using SiO2-based metamaterial structure[J]. Chinese Physics,2014, B23(4): 589-592.

[20] MA R K, ZHANG Y Ch, FANG Y T. Broadband THz absorbers based on graphene and 1-D photonic crystal[J]. Laser Technology, 2017, 41(5): 723-727(in Chinese).

[21] YAO G, LING F, YUE J, et al. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency[J]. IEEE Photonics Journal, 2017, 8(1): 1-8.

[22] CHENG Y Zh, YANG H L, CHENG Zh Z, et al. A planar polarization-insensitive metamaterial absorber[J]. Photonics and Nanostructure-Fundamentals and Applications, 2011, 9(1): 8-14.

[23] REN Y H, DING J, GUO Ch J, et al. Design of a quad-band wide-angle microwave metamaterial absorber[J]. Journal of Electronic Materials, 2017, 46(1): 370-376.

[24] ZHAI H Q, ZHAN Ch H , LIU L, et al. A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability[J]. Journal of Electromagnetic Waves and Applications,2015,29(6): 774-785.

[25] LIU D, YU H T, YANG Zh, et al. Ultrathin planar broadband absorber through effective medium design[J]. Nano Research, 2016, 9(8): 2354-2363.

张浩, 章海锋, 杨靖, 刘佳轩. 一种基于等离子体超材料的吸波器设计[J]. 激光技术, 2018, 42(5): 704. ZHANG Hao, ZHANG Haifeng, YANG Jing, LIU Jiaxuan. Design of an absorber based on plasma metameterial[J]. Laser Technology, 2018, 42(5): 704.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!