激光技术, 2018, 42 (5): 704, 网络出版: 2018-09-11   

一种基于等离子体超材料的吸波器设计

Design of an absorber based on plasma metameterial
作者单位
南京邮电大学 电子与光学工程学院 光电信息科学与工程系, 南京 210023
摘要
为了在TE波下获得可调谐的吸收频谱, 设计了一款基于等离子体超材料的吸波器。采用全波仿真方法对该吸波器的吸收率和表面电流图进行了计算, 并探讨了结构参量c, v和入射角度θ对吸收率的影响。结果表明, 通过激励不同的等离子体谐振区域不但可以改善其吸收特性, 而且还能获得可调谐的吸收频谱; 改变结构参量c和v可以在实现拓展吸收带宽的同时, 使得吸收频域也发生移动; 改变入射角度θ的大小对吸收率的影响不大。该吸波器具有很好的角度稳定性。
Abstract
In order to obtain tunable absorption spectra under TE wave, an absorber was designed based on plasma metamaterial. The absorption spectra and the distribution of surface current of the absorber were computed by means of full-wave simulation. The effect of structural parameters c, v and incident angle θ on absorption spectra was also discussed. The simulated results demonstrate that not only the tunable absorption spectra can be obtained in the proposed absorber but also the properties of absorption can be improved by exciting the different plasma resonance structures. Changing the structural parameters of c and v, the absorption bandwidth can be widened and its location can be tuned at same time. The incident angle θ has little effect on the absorption spectra. The proposed absorber has good angular stability.
参考文献

[1] PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theroy and Techniques, 1999, 47(11): 2075-2084.

[2] SMITH D R , PADILLA W J , VIER D C, et al. Composite medium with simulataneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187.

[3] SMITH D R, SCHURING D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors[J]. Physical Review Letters, 2003,90(7): 077405.

[4] JAEYOUN K, RICHARD S, WALTER R B. Multi-peak electromagnetically induced transparency(EIT)-like transmission from bull’s-eye-shaped metamateria[J]. Optics Express, 2010, 18(17): 17997-18002.

[5] ALEXANDER A Z, VLADISLAV V K. Giant resonant mageto-optic Kerr effect in nanostructured ferromagnetic metamaterial[J]. Journal of Applie Physics, 2007, 102(12): 123514.

[6] HU Y H, WEN S C, ZHUO H, et al. Focusing properties of Gaussian beams by a slab of Kerr-type lefthanded metamaterial[J]. Optics Express, 2008, 16(7): 4774-4784.

[7] VESELAGO V G. The electrodynamics of substances with simulaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

[8] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292 (5514): 77-79.

[9] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.

[10] FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a sliver superlens[J]. Science, 2005, 308(5721): 534-537.

[11] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

[12] LIU Y W, WANG X H, DONG Z D, et al. Tunable electromagnetic cloaking by external field[J]. Transactions of Nanjing University of Aeronzutics & Astronautics, 2014, 31(3): 241-248.

[13] YIN Q T, YAO G, SHI S J, et al. Study on transparency structure induced by tunable teraherz plasmon[J]. Laser Technology, 2017, 41(6): 826-830 (in Chinese).

[14] LANDY N I, SAIUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

[15] TAO H, LANDY N I, BINGHAM C M, et al. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization [J]. Optics Express, 2008, 16(10): 7181-7188.

[16] DAYAL G, RAMAKRISHNA S A. Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks[J]. Journal of Optics, 2013, 15(5): 527-535.

[17] RUFANGURA P, SABAH C. Dual-band perfect metamaterial absorber for solar cell applications[J]. Vacuum, 2015, 120(B): 68-74.

[18] SHAN Y, CHEN L, SHI C, et al. Ultrathin flexible dual band terahertz absorber[J]. Optics Communications, 2015, 350: 63-70.

[19] MO M M, WEN Q Y, CHEN Zh, et al. Strong and broadband terahertz absorber using SiO2-based metamaterial structure[J]. Chinese Physics,2014, B23(4): 589-592.

[20] MA R K, ZHANG Y Ch, FANG Y T. Broadband THz absorbers based on graphene and 1-D photonic crystal[J]. Laser Technology, 2017, 41(5): 723-727(in Chinese).

[21] YAO G, LING F, YUE J, et al. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency[J]. IEEE Photonics Journal, 2017, 8(1): 1-8.

[22] CHENG Y Zh, YANG H L, CHENG Zh Z, et al. A planar polarization-insensitive metamaterial absorber[J]. Photonics and Nanostructure-Fundamentals and Applications, 2011, 9(1): 8-14.

[23] REN Y H, DING J, GUO Ch J, et al. Design of a quad-band wide-angle microwave metamaterial absorber[J]. Journal of Electronic Materials, 2017, 46(1): 370-376.

[24] ZHAI H Q, ZHAN Ch H , LIU L, et al. A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability[J]. Journal of Electromagnetic Waves and Applications,2015,29(6): 774-785.

[25] LIU D, YU H T, YANG Zh, et al. Ultrathin planar broadband absorber through effective medium design[J]. Nano Research, 2016, 9(8): 2354-2363.

张浩, 章海锋, 杨靖, 刘佳轩. 一种基于等离子体超材料的吸波器设计[J]. 激光技术, 2018, 42(5): 704. ZHANG Hao, ZHANG Haifeng, YANG Jing, LIU Jiaxuan. Design of an absorber based on plasma metameterial[J]. Laser Technology, 2018, 42(5): 704.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!