激光与光电子学进展, 2003, 40 (12): 1, 网络出版: 2006-06-27  

超高密度数字光存储新技术的研究进展

Progress of Novel Technology in Ultra-high Density Digital Optical Data Storage
作者单位
中国科学院上海光学精密机械研究所,上海,201800
摘要
信息技术的发展要求存储器件必须具备超高存储密度、超快存取速率以及长的存储寿命,而传统的数字光存储的存储密度已经接近其物理极限.因此探索新的存储理论、技术和材料,已成为目前数字光存储领域的急迫任务.简要综述了超高密度数字光存储新技术,介绍了近年来该领域研究的新进展.
Abstract
The development of information technique requires that a data storage device must possess the character of ultra-high density, ultra-fast transfer rate and longer storage lifetime. At present, the storage density of the conventional optical data storage is reaching its physics limit. Therefore, studying novel data storage theory, technique and materials has become very urgent. In this article, we review the novel technologies in ultra-high density digital optical storage and introduce the recent development in this field.
参考文献

[1] 干福熹等编著.数字光盘存储技术.北京:科学出版社.1998.1~13

[2] 干福熹.信息存储技术发展展望.2000高技术发展报告

[3] Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory. Science, 1989, 245:843~845

[4] Pudavar H E, Joshi M P, Prasad P N et al.. High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout. Appl. Phys. Lett., 1999, 74(9):1338~1340

[5] He G S, Markowicz P P et al.. Observation of stimulated emission by direct three-photon excitation. Science, 2002,415:767~770

[6] Goppert-Mayer M. Elementartakte mit zwei Quantensprüngen. Ann.Phys., 1931, 9:275~294

[7] Hunter S, Kiamilev F et al.. Potentials of two-photon based 3-D optical memories for high performance computing. Appl.Opt., 1990, 29(14):2058~2066

[8] Sengupta P, Balaji J et al.. Sensitive measurement of absolute two-photon absorption cross sections. J. Chem. Phys., 2000,112(21):9201~9205

[9] Cumpston B H, Ananthavel S P et al.. Two-photon polymerization initiators for three dimensional optical data storage and microfabrication. Nature, 1999, 398:51~54

[10] Gu M, Amistoso J O et al.. Effect of saturable response to two-photon absorption on the read out single level of threedimensional bit optical data storage in a photochromic polymer. Appl. Phys. Lett., 2001,79(2):148~150

[11] Liao Ningfang et al.. Single-beam two-photon three-dimensional optical storage in a pyrrylsubstituted fulgide photochromic material. Chinese Science Bulletin, 2001,46(22):1856~1859

[12] Fan Sun, Fushi Zhang et al.. Two-photon induced fluorescence of diarylethene molecule. Proc. SPIE, 2002, 4930:439~442

[13] Gu M, Day D. Use of continuous-wave illumination for two-photon three-dimensional bit data storage in a photobleaching polymer. Opt. Lett., 1999,24(5): 288~290

[14] Albota M et al.. Design of organic molecules with large two-photon absorption cross section. Science, 1998, 281:1653~1656

[15] Xia A D, Wada S et al.. Optical data storage in C60 doped polystyrene film by photo-oxidation. Appl. Phys. Lett., 1998,73(10):1323~1325

[16] Wada S, Xia Andong et al.. 3D optical data storage with two-photon induced photon-oxidation in C60 doped polystyrene film.Focused on Ultra Fast Optical Sciences, 2002,49:52~54

[17] Satoshi Kawata. Photorefractive optics in three-dimensional digital memory. IEEE, 1999,87(12): 2009~2020

[18] Day D, Gu M et al.. Use of two-photon excitation for erasable-rewritable three-dimensional data storage in a photorefractive polymer. Opt. Lett., 1999,24(14): 948~950

[19] Mcphail D, Gu M. Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination. Appl. Phys. Lett., 2002, 81(7): 1160~1162

[20] 干福熹等编著.数字光盘存储技术.北京:科学出版社,1998.306~309

[21] Lundquist P M, Wortmann R et al.. Organic glasses: a new class of photorefractive materials. Science, 1996,274:1182~1185

[22] Alexander Hellemans. Holograms Can Store Terabytes, But Where Science, 1999, 286:1502~1504

[23] Coufal H, Burr G W. Optical data storage. To appear in international trends in optics (2002)

[24] H.Lee H W, Gehrtz M et al.. Two-color, photon-gated spectral hole-burning in an organic material. Chem. Phys. Lett., 1985,118:611

[25] Seongtae Park, Yonghwa Chung et al. Reduction effect on the Persistent Spectral Hole Burning of Sm2+-doped Mg0.5Sr0.5FCl0.5Br0.5 mixed crystals. J. Korean Physical Society, 2002,41(5):L583~L586

[26] Fedorov V V, Mirov S B, Ashenafi M et al.. Spectroscopic analysis and persistent photon-gated spectral hole burning in LiF:F2-color center crystal. Appl. Phys. Lett., 2001, 79(8):2318~2320

[27] 朱道本,王佛松编著.有机固体.上海:上海科学技术出版社.1999:323~326

[28] Itkis M E, Chi X et al.. Magneto-opto-electronic bistability in a phenalenyl-based neutral radical. Science, 2002,296:1443~1445

[29] Fujita W, Awaga K. Room-temperature magnetic bistability in organic radical crystals. Science, 1999, 286:261~262

[30] Pejakovic D A, Kitamura C et al.. Photoinduced Magnetization in the Organic-Based Magnet Mn (TCNE)x-y (CH2Cl2). Phys.Rev. Lett., 2002, 88:0572021~0572024

[31] Horspool W, Song P. CRC Handbook of Organic Photochemistry and Photobiology, CRC Press, Boca Raton, Chap. 33, 1995

[32] Birge R. Protein-Based Branched Photocycle Three-Dimensional Optical Memories, Rome Laboratory Final Report F30602-93-C-0135, 1996

[33] Fonarev A, Milkaelian A L et al.. Dynamic properties of bacteriorhodopsin exposed to ultra short light pulses. Opt. Lett., 2000,25(15):1080~1082

[34] Roth Ron M, Yakhini Zohar et al.. U. S. Patent 6074831. 2000

[35] Kobler B, Hariharan P C. Moore's law and data storage. The Premier Advanced Recording Technology Forum, 2002:1~24

[36] William S Oakley. High data rate optical tape recording. The Premier Advanced Recording Technology Forum, 2001:1~13

马文波, 吴谊群, 顾冬红, 干福熹. 超高密度数字光存储新技术的研究进展[J]. 激光与光电子学进展, 2003, 40(12): 1. 马文波, 吴谊群, 顾冬红, 干福熹. Progress of Novel Technology in Ultra-high Density Digital Optical Data Storage[J]. Laser & Optoelectronics Progress, 2003, 40(12): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!