光学与光电技术, 2023, 21 (6): 0007, 网络出版: 2024-02-29  

基于轨迹预判的空间小目标在轨检测方法研究

Research on On-Orbit Detection Methods for Space Targets
张薇 1,2,3席红霞 1,2
作者单位
1 中国科学院上海技术物理研究所, 上海 200083
2 中国科学院智能红外感知重点实验室, 上海 200083
3 中国科学院大学, 北京 100049
摘要
空间目标监视和检测是维护空间环境安全的重要保障, 天基观测是其中的一个重要观测手段。在天基观测图像中, 恒星和空间小目标形状、大小相似, 影响空间小目标的检测。且空间环境复杂, 图像的噪声也会对空间小目标检测造成干扰。针对以上问题, 提出了一种基于轨迹预判的空间小目标在轨检测方法。首先对图像进行预处理, 包含使用图像滤波剔除坏像元和背景影响以及阈值分割。对相机进行畸变误差校正, 再进行坐标系转换以及匹配星表剔除大部分恒星。然后采集多帧图像, 对候选目标进行轨迹关联、预判, 确定搜索范围。最后实现对空间小目标的检测。本检测方法具有以下几方面的优势: 在低信噪比下, 实现高检测精度和低虚警率; 减少搜索范围, 提高在轨实时检测能力; 具备对连续帧图像上目标不连续出现的检测能力, 适应更复杂的空间环境下目标检测需求。本检测方法的检测能力在硬件系统上得到了验证, 实验结果表明, 该算法在检测信噪比为2的目标时也具有99.9%的检测率和0.002%的虚警率, 为在轨空间小目标检测提供参考。
Abstract
Space target monitoring and detection is an important guarantee for maintaining the safety of the space environment, and space-based observation is one of the important observation methods. In space-based observation images, the shape and size of stars and small spatial targets are similar, which affects the detection of small spatial targets. Moreover, the spatial environment is complex, and the noise in the image can also interfere with the detection of small spatial targets. A method for detecting small spatial targets in orbit based on trajectory prediction is proposed to address the above issues. Firstly, the image is preprocessed, including image filtering, which is used to remove bad pixels and reduce background influence, and threshold segmentation. Distortion error correction on the camera is performed, then coordinate system conversion is performed as well, and the star catalog is matched to remove most stars. Then the method collects multiple frames of images, performs trajectory correlation and prediction on candidate targets, and determines the search range. Finally, the detection of small spatial targets is achieved. This detection method has the following advantages: Achieving high detection accuracy and low false alarm rate under low signal-to-noise ratio; Reducing search scope and improving real-time detection capability in orbit; Having the ability to detect discontinuous occurrences of targets on continuous frame images, adapting to the needs of target detection in more complex spatial environments. The detection ability of this detection method has been verified on a hardware system. The experimental results show that the algorithm has a high detection rate and a low false alarm rate when detecting low signal-to-noise ratio targets, which provides a reference for small target detection in orbit space.
参考文献

[1] 刘胜利, 郭裕兰, 王刚. 基于注意力机制与动态激活的空间目标检测算法[J]. 激光与光电子学进展, 2022, 59(14): 236-242. LIU Sheng-li, GUO Yu-lan, WANG Gang. Space target detection algorithm based on attention mechanism and dynamic activation[J]. Laser & Optoelectronics Progress, 2022, 59(14): 236-242.

[2] 王晓海. 天基空间目标探测系统技术研究进展[J]. 卫星与网络, 2017(11): 64-70. WANG Xiao-hai. Research progress of spaced-based space target detection system technology[J]. Satellite & Network, 2017(11): 64-70.

[3] 汤泽滢, 黄贤锋, 蔡宗宝. 国外天基空间目标监视系统发展现状与启示[J]. 航天电子对抗, 2015, 31(2): 24-26+30.TANG Ze-ying, HUANG Xian-feng, Cai Zong-bao. Development status and enlightenment of foreign space-based space surveillance systems[J]. Aerospace Electronic Warfare, 2015, 31(2): 24-26+30.

[4] Liebe C C. Pattern recognition of star constellations for spacecraft applications[J]. IEEE Aerospace and Electronic Systems Magazine, 1993, 8(1): 31-39.

[5] 陆涵, 林宝军, 张永合, 等. 小视场星敏感器的三角形改进算法[J]. 计算机科学, 2022, 49(S2): 537-541. LU Han, LIN Bao-jun, ZHANG Yong-he, et al. Improve triangular algorithm for small filed of view star sensor [J]. Computer Science, 2022, 49(S2): 537-541.

[6] 梁莹, 蔡善军, 张丽娜, 等. 一种改进的快速全天星图识别算法[J]. 导航定位与授时, 2022, 9(3): 87-91. LIANG Ying, CAI Shan-jun, ZHANG Li-na, et al. An improved fast all-sky star map recognition algorithm [J]. Navigation Positioning and Timing, 2022, 9(3): 87-91.

[7] 蔡迎波, 惠宝聚, 孟士超. 星图识别算法的优化设计与实现[J]. 光学与光电技术, 2009, 7(2): 37-39+69. CAI Ying-bo, HUI Bao-ju, MENG Shi-chao. Optimum design and realization of star image identification algorithm [J]. Optics & Optoelectronic Technology, 2009, 7(2): 37-39+69.

[8] Padgett C, Kreutz-Delgado K. A grid algorithm for autonomous star identification[J]. IEEE Transactions on Aerospace & Electronic Systems, 1997, 33(1): 202-213.

[9] 李江操, 魏宏刚, 张辉. 一种基于BP网络的星图识别算法[J]. 半导体光电, 2019, 40(2): 256-260. LI Jiang-cao, WEI Hong-gang, ZHANG Hui. A star pattern identification algorithm based on BP neural network [J]. Semiconductor Optoelectronics, 2019, 40(2): 256-260.

[10] 王恩旺, 王恩达. 改进的帧差法在空间运动目标检测中的应用[J]. 天文研究与技术, 2016, 13(3): 333-339. WANG En-wang, WANG En-da. Application of an improved frame difference method space moving target detection[J]. Astronomical Research & Technology, 2016, 13(3): 333-339.

[11] 王敏, 赵金宇, 陈涛. 基于距离矩阵的星图运动目标检测[J]. 光学精密工程, 2017, 25(7): 1954-1960.WANG Min, ZHAO Jin-yu, CHEN Tao. Moving target in star map based on distance matrix [J]. Optics and Precision Engineering, 2017, 25(7): 1954-1960.

[12] 张健, 娄树理, 任建存. 基于时序多帧投影的空间目标检测算法[J]. 激光与红外, 2015, 45(1): 88-93. ZHANG Jian, LOU Shu-li, REN Jian-cun. Space target detection algorithm based on sequential multi-frames projection[J]. Laser & Infrared, 2015, 45(1): 88-93.

[13] Xi J, Xiang Y, Ersoy O K, Cong M, Wei X, Gu J. Space debris detection using feature learning of candidate regions in optical image sequences[J]. IEEE Access, 2020, (8): 150864-150877.

[14] 侯娅贤, 赵汝进. 星敏感器高动态运动星点定位技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021. HOU Ya-xian, ZHAO Ru-jin. Research on high dynamic motion star positioning technology of star sensor[D]. Chengdu: University of Chinese Academy of Sciences(Institute of Optics and Electronics of Chinese Academy of Sciences), 2021.

张薇, 席红霞. 基于轨迹预判的空间小目标在轨检测方法研究[J]. 光学与光电技术, 2023, 21(6): 0007. ZHANG Wei, XI Hong-xia. Research on On-Orbit Detection Methods for Space Targets[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(6): 0007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!