光子学报, 2016, 45 (7): 070705001, 网络出版: 2016-08-18   

正弦光栅标量衍射及等效介质理论有效性分析

Analysis of Accuracy of Scalar Diffraction Theory and Effective Medium Theory for Sinusoidal Grating
作者单位
中国计量学院 光学与电子科技学院, 杭州 310018
摘要
利用严格傅里叶模式理论研究了不同基底折射率、入射角度、归一化周期、归一化沟槽深度对正弦型光栅微结构衍射效率的影响, 并分析了该光栅的衍射特性.基于标量衍射理论和等效介质理论, 分别计算了光栅周期远远大于和远远小于入射波长时, 正弦型光栅的衍射效率, 并与傅里叶模式理论的计算结果进行比较, 分析标量衍射理论和等效介质理论的有效性.结果表明:在垂直入射条件下, 当光栅基质材料折射率为1.5时, 标量衍射理论在光栅归一化周期大于5时, 能够准确计算光栅衍射效率, 误差小于3%; 当基底折射率增大到3.42时, 只有在光栅归一化周期大于10时, 标量衍射理论才有效, 误差小于5%; 当正弦型光栅透射光中只有0级衍射光传播时, 等效介质理论能够准确计算其透射率; 随着入射角度的增大, 标量衍射理论和等效介质理论的有效性都不同程度地降低.
Abstract
By using the rigorous Fourier modal theory, the influence of the substrate refractive index, the incident angle, the normalized period and the normalized depth with different values on the diffraction efficiency of a sinusoidal grating microstructure was investigated. Also, the diffraction properties of the grating were analyzed. Based on the scalar diffraction theory and the effective medium theory, the diffraction efficiencies of the sinusoidal grating were calcualted at which the period is far greater than the incident wavelength and far smaller than the wavelength respectively. Using the different parameters of grating structure, comparing the results calculated by these two theories with that estimated by Fourier modal theory, the accuracy of the scalar diffraction theory and the effective medium theory was analyzed. The results show that when the refractive index of grating is about 1.5, the normalized depth is less than or equal to 1 and normalized period is greater than or equal to 5, the scalar diffraction theory can be used to calculate the diffraction efficiency of sinusoidal grating, the error is less than 3%; If the refractive index is increased to 3.42, only when the normalized period is greater than or equal to 10, the scalar diffraction theory can be used to estimate the diffraction efficiency and the error is less than 5%. Only zeroth transmittance light is propagating, effective medium theory is valid to evaluate the diffraction efficiency of sinusoidal grating. It is noted that the error of two simple methods is minimum at a normal incidence. Furthermore, the accuracy of scalar diffraction theory and effective medium theory decreases as the incident angle increasing.
参考文献

[1] ALEXEI E, ALEXANDRE F. Investigation of the properties of Bragg-Fresnel grating[J]. Proceedings Society of Photo-Optical Instrumentation Engineers, 2004, 5539: 148-159.

[2] 马介渊. 衍射光栅的光刻工艺与研究[D]. 西安: 西安理工大学, 2008.

[3] KITAGAWA H, FUJITA M, SUTO T, et al. Green GaInN photonic-crystal light-emitting diodes with small surface recombination effect[J]. Applied Physics Letters, 2011, 98: 181104.

[4] LIU Xuan, HUANG Hai-tao, ZHU He-yuan, et al. Widely tunable, narrow linewidth Tm∶YAG ceramic laser with a volume Bragg grating[J]. Chinese Optics Letters, 2015, 13(3): 061404.

[5] FUJI T, GAO Y, SHARMA R, et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening[J]. Applied Physics Letters, 2004, 84(6): 855-857.

[6] CHEN Yun-lin, FAN Tian-wei, TONG Man. Diffractive self-imaging based on selective etching of a ferroelectric domain inversion grating[J]. Chinese Optics Letters, 2015, 13(2): 020502.

[7] LI Li-feng. Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity[J]. Journal of the Optical Society of America A, 1993, 10(12): 2581-2591.

[8] LI Li-feng. New formulation of the Fourier modal method for crossed surface-relief gratings[J]. Journal of the Optical Society of America A, 1997, 14(10): 2758-2767.

[9] MOHARAM M, GAYLORD T. Diffraction analysis of dielectric surface-relief gratings[J]. Journal of the Optical Society of America A, 1982, 72: 1385-1392.

[10] TING C, CHEN C, CHOU C. Subwavelength structures for broadband antireflection application[J]. Optics Communications, 2009, 282(3): 434-438.

[11] CHANDEZON J, DUPUIS M. Multicoated gratings: a differential formalism applicable in the entire optical region[J]. Journal of the Optical Society of America A, 1982, 72(7): 839-846.

[12] HOSHINO T, BANERJEE S, ITOH M, et al. Diffraction pattern of triangular grating in the resonance domain[J]. Journal of the Optical Society of America A, 2009, 26(3):715-722.

[13] LEE T, LIN C, MA S, et al. Analysis of position dependent light extraction of GaN based LEDs[J]. Optics Express, 2005, 13(11): 4175-4179.

[14] POMMET D, MOHARAM M, GRANN E. Limits of scalar diffraction theory for diffractive phase elements[J]. Journal of the Optical Society of America A, 1994, 11(6): 1827-1834.

[15] RAGUIN D, MORRIS G. Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles[J]. Applied Optics, 1993, 32(14): 2582-2598.

[16] RAGUIN D, MORRIS G. Antireflection structured surfaces for the infrared spectral region[J]. Applied Optics, 1993, 32(7): 1154-1167.

[17] MA Jian-yong, LIU Shi-jie, JIN Yun-xia, et al. Novel method for design of surface relief guided-mode resonant gratings at normal incidence[J]. Optics Communications, 2008, 281(12): 3295-3300.

[18] 唐雄贵. 基于严格模式理论的光栅衍射特性的研究[D]. 成都:四川大学, 2002.

[19] COWAN J. Aztec surface-relief volume diffractive structure[J]. Journal of the Optical Society of America A, 1990, 7(8): 1529-1544.

[20] BRUNDRETT D, GLYTSIS E, GAYLORD T. Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs[J]. Applied Optics, 1994, 33(13): 2695-2706.

[21] 李秀山, 宁永强, 张星, 等.Si/SiO2高对比光栅参数对反射率的影响[J].发光学报, 2015, 36(7): 806-810.

    LI Xiu-shan, NING Yong-qiang, ZHANG Xing, et al. Influence of grating parameterson reflectivity of Si/SiO2 high contrast gratings[J]. Chinese Journal of Luminescence, 2015, 36(7): 806-810.

[22] MACLEOD H. Thin film optical filters[M]. Bristol:Institute of Physics Publishing, 2001.

王卫敏, 阮东升, 井绪峰. 正弦光栅标量衍射及等效介质理论有效性分析[J]. 光子学报, 2016, 45(7): 070705001. WANG Wei-min, RUAN Dong-sheng, JING Xu-feng. Analysis of Accuracy of Scalar Diffraction Theory and Effective Medium Theory for Sinusoidal Grating[J]. ACTA PHOTONICA SINICA, 2016, 45(7): 070705001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!