应用激光, 2017, 37 (3): 435, 网络出版: 2017-08-30  

基于TDLAS技术汽轮机排汽湿度检测系统设计

Design of the Steam Turbine Exhaust Wetness Detection System Based on TDLAS Technology
作者单位
1 东北电力大学自动化工程学院, 吉林 吉林 132012
2 东北电力大学节能与测控技术研究中心, 吉林 吉林 132012
摘要
蒸汽湿度的测量对汽轮机安全、经济运行具有重要意义。为了能够实现直接对排汽湿度准确、快速在线监测, 以948 nm-DFB可调谐激光器为传感部件, 以单片机C8051F410为核心, 基于TDLAS-WMS技术开展了汽轮机末级湿度检测系统设计。其中讨论了TDLAS技术湿度检测原理, 推导了湿度与可调谐激光的理论公式, 并结合有关谐波信号检测、PID温度控制、锁相放大以及所需软件的设计, 完成了汽轮机湿度测量系统的开发。通过比测实验结果表明, 该湿度检测系统具有较好的实用性及可行性。其湿度测量误差在±1.2%以内, 能够满足对汽轮机湿度高动态、高精度测量的需要。
Abstract
The measurement of steam wetness is of great significance to the safe and economical operation of the steam turbine. In order to realize the accurate and rapid online detection of the exhaust wetness, A steam turbine final-stage wetness detection system was designed based on TDLAS-WMS technology. Moreover, a 948 nm-DFB tunable laser was adopted as the sensor component while the SCM C8051F410 was used as the core part. The principle of detecting the wetness through TDLAS technology has been discussed. The theoretical formula for the wetness and tunable laser has been also derived. Based on the theories of the harmonic signal detection, PID temperature control, lock-in amplification as well as relevant software design, the development of the steam turbine wetness detection system has been completed. According to the comparison of experimental result, this wetness detection system has achieved the excellent practicability and feasibility. With the wetness measurement error falling between minus 1.2 percent and plus 1.2 percent, it can satisfy the requirement for the dynamic and high-precision measurement of the steam turbine wetness.
参考文献

[1] 王升龙, 杨善让, 王建国,等. 汽轮机排汽湿度的在线监测方法及工业试验研究[J]. 中国电机工程学报, 2005, 25(17): 83-87.

[2] 宁德亮, 高雷, 刘新全. 流动蒸汽湿度测量方法的研究与比较[J]. 热能动力工程, 2009, (2): 149-153.

[3] 李硕, 谢建军, 柳润琴,等. 基于氧传感器基础上高温湿度测量仪的研发[J]. 电子测量技术, 2014, (2):95-99.

[4] 张可可, 闫星魁, 郑学勇. 基于TDLAS的激光湿度检测技术研究[J]. 光电子技术, 2016, (1): 23-27.

[5] 许健佳, 王晓荣, 王梦佳. 基于PCap02的电容式微水检测系统设计[J]. 仪表技术与传感器, 2016, (3): 65-68.

[6] 胡叶民. 基于DSP的DFB激光器驱动电源设计[J]. 激光杂志, 2015, (1): 82-84.

[7] 李晗, 刘建国, 何亚柏, 等. 可调谐二极管激光吸收光谱二次谐波信号的模拟与分析[J]. 光谱学与光谱分析, 2013, (4): 881-885.

[8] 李明星, 刘建国, 姚路, 等. 基于可调谐半导体激光吸收光谱的CO和CH4实时检测系统设计[J]. 光学学报, 2015, (4): 33-37.

[9] 孙利, 田丽芳. 基于ARM的高精度可调谐LD温度控制器[J]. 激光杂志, 2015, (4): 56-58.

[10] 齐汝宾, 杜振辉, 孟繁莉, 等. 准连续激光调制吸收谱的多谐波分析[J]. 光谱学与光谱分析, 2012, (3): 586-589.

[11] 张帅, 刘文清, 张玉钧, 等. 数字滤波方法在TDLAS气体检测中的应用[J]. 光学学报, 2010, (5): 1362-1367.

孙灵芳, 于洪, 张召鹏. 基于TDLAS技术汽轮机排汽湿度检测系统设计[J]. 应用激光, 2017, 37(3): 435. Sun Lingfang, Yu Hong, Zhang Zhaopeng. Design of the Steam Turbine Exhaust Wetness Detection System Based on TDLAS Technology[J]. APPLIED LASER, 2017, 37(3): 435.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!