光子学报, 2015, 44 (10): 1017003, 网络出版: 2015-11-30   

3D-STORM超分辨成像中单分子轴向定位精度优化研究

Optimization of Single Molecules Axial Location Precision in 3D Stochastic Optical Reconstruction Microscopy
作者单位
1 中国科学院苏州生物医学工程技术研究所 江苏省医用光学重点实验室,江苏 苏州 215163
2 中国科学院长春光学精密机械与物理研究所,长春 130033
3 中国科学院大学,北京 100039
摘要
为定量描述柱透镜参数对三维成像过程中荧光分子轴向定位精度的影响,本文研究了柱透镜参数与点扩散函数椭圆率的相互关系.基于Olympus IX-83倒置荧光显微镜搭建成像系统,利用3个不同焦距柱透镜进行实验,通过柱透镜标定曲线的线性变化范围及该范围内曲线的斜率分析柱透镜参数选择上的优劣,优化并提高轴向定位的精度和深度.选择合适的柱透镜参数可实现标定曲线在焦平面上下1 μm范围线性变化,轴向定位精度为16 nm,并采用优化的标定曲线对肌动蛋白微丝进行三维超分辨成像.
Abstract
The relationship between the ellipticity of point spread function and the focal length of cylindrical lens was investigated. Fluorescent inverted microscopey imaging system is based on Olympus IX-83. With three different focal length,the point spread function with custom built stochastic optical reconstruction microscopy instruments was measured. A method to evaluate the cylindrical lens was developed based on linear region and localization error. The results show that linear region of 1μm and axial localization error of 16 nm can be achieved with correct focal length. As the demonstration,three dimension super-resolution image of Actin filaments was reconstructed.
参考文献

[1] HELL S W,WICHMANN J. Breaking the diffraction resolution limit by stimulated-emission-stimulated-depletion fluorescence microscopy [J]. Optics Letters,1994,19(11): 780-782.

[2] GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(37): 13081-13086.

[3] RUST M J,BATES M,ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods,2006,3(10): 793-795.

[4] BETZIG E,PATTERSON G H,SOUGRAT R,et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science,2006,313(5793): 1642-1645.

[5] HESS S T,GIRIRAJAN T P K,MASON M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J]. Biophysical Journal,2006,91(11): 4258-4272.

[6] HUANG B,BABCOCK H,ZHUANG X. Breaking the diffraction barrier: super-resolution imaging of cells [J]. Cell,2010,143(7): 1047-1058.

[7] DING Y,XI P,REN Q. Hacking the optical diffraction limit: Review on recent developments of fluorescence nanoscopy [J]. Chinese Science Bulletin,2011,56(18): 1857-1876.

[8] HUANG B,WANG W,BATES M,et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy [J]. Science,2008,319(5864): 810-813.

[9] SHTENGEL G,GALBRAITH J A,GALBRAITH C G,et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure [J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(9): 3125-3130.

[10] HESS H. iPALM: 3D optical imaging of protein locations at the nanometer level [J]. Biophysical Journal,2010,98(3): 619A-619A.

[11] GROVER G,DELUCA K,QUIRIN S,et al. Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE) [J]. Optics Express,2012,20(24): 26681-26695.

[12] HUANG B. An in-depth view [J]. Nature Methods,2011,8(4): 304-305.

[13] SMALL A,STAHLHEBER S. Fluorophore localization algorithms for super-resolution microscopy [J]. Nature Methods,2014,11(3): 267-279.

[14] ALLEN J R,ROSS S T,DAVIDSON M W. Single molecule localization microscopy for superresolution [J]. Journal of Optics,2013,15(9): 094001.

[15] HENRIQUES R,LELEK M,FORNASIERO E F,et al. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ [J]. Nature Methods,2010,7(5): 339-340.

[16] METCALF D J,EDWARDS R,KUMARSWAMI N,et al. Test samples for optimizing STORM super-resolution microscopy [J]. Jove-Journal of Visualized Experiments,2013,(79):e50579.

张世超, 李思黾, 杨光, 李辉, 熊大曦. 3D-STORM超分辨成像中单分子轴向定位精度优化研究[J]. 光子学报, 2015, 44(10): 1017003. ZHANG Shi-chao, LI Si-min, YANG Guang, LI Hui, XIONG Da-xi. Optimization of Single Molecules Axial Location Precision in 3D Stochastic Optical Reconstruction Microscopy[J]. ACTA PHOTONICA SINICA, 2015, 44(10): 1017003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!