Journal of Innovative Optical Health Sciences, 2014, 7 (1): 1450017, Published Online: Jan. 10, 2019  

A BIOSENSOR USING COUPLED PLASMON WAVEGUIDE RESONANCE COMBINED WITH HYPERSPECTRAL FLUORESCENCE ANALYSIS

Author Affiliations
1 Shenzhen Key Laboratory for Minimal Invasive Medical Technologies Graduate School at Shenzhen, Tsinghua University Shenzhen 518055, P. R. China
2 Department of Physics, Tsinghua University Beijing 100084, P. R. China
3 Laboratory of Advanced Power Source Graduate School at Shenzhen, Tsinghua University Shenzhen 518055, P. R. China
Abstract
We developed a biosensor that is capable for simultaneous surface plasmon resonance (SPR) sensing and hyperspectral fluorescence analysis in this paper. A symmetrical metal-dielectric slab scheme is employed for the excitation of coupled plasmon waveguide resonance (CPWR) in the present work. Resonance between surface plasmon mode and the guided waveguide mode generates narrower full width half-maximum of the reflective curves which leads to increased precision for the determination of refractive index over conventional SPR sensors. In addition, CPWR also offers longer surface propagation depths and higher surface electric field strengths that enable the excitation of fluorescence with hyperspectral technique to maintain an appreciable signal-to-noise ratio. The refractive index information obtained from SPR sensing and the chemical properties obtained through hyperspectral fluorescence analysis confirm each other to exclude false-positive or false-negative cases. The sensor provides a comprehensive understanding of the biological events on the sensor chips.
References

[1] J. Homola, S. S. Yee, G. Gauglitz, "Surface plasmon resonance sensors: Review," Sens. Actuators B Chemical 54(1), 3–15 (1999).

[2] J. Melendez, R. Carr, D. Bartholomew et al., "Development of a surface plasmon resonance sensor for commercial applications," Sens. Actuators B Chemical 39(1), 375–379 (1997).

[3] S. Herminghaus, P. Leiderer, "Improved attenuated total reflectance technique for the investigation of dielectric surfaces," Appl. Phys. Lett. 54(2), 99–101 (1989).

[4] K. Kurihara, K. Suzuki, "Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann's theory," Anal. Chem. 74(3), 696–701 (2002).

[5] K. Matsubara, S. Kawata, S. Minami, "Optical chemical sensor based on surface plasmon measurement," Appl. Opt. 27(6), 1160–1163 (1988).

[6] D. Wassaf, G. Kuang, K. Kopacz et al., "Highthroughput affinity ranking of antibodies using surface plasmon resonance microarrays," Anal. Biochem. 351(2), 241–253 (2006).

[7] R. L. Rich, Y. S. N. Day, T. A. Morton et al., "Highresolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE," Anal. Biochem. 296(2), 197–207 (2001).

[8] J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chem. Rev. 108(2), 462 (2008).

[9] X. D. Hoa, A. G. Kirk, M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23(2), 151–160 (2007).

[10] L. He, M. D. Musick, S. R. Nicewarner et al., "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122(38), 9071–9077 (2000).

[11] H. J. Lee, T. T. Goodrich, R. M. Corn, "SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films," Anal. Chem. 73(22), 5525–5531 (2001).

[12] K. Usui-Aoki, K. Shimada, M. Nagano et al., "A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology," Proteomics 5(9), 2396–2401 (2005).

[13] A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, "Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance," Appl. Opt. 36(25), 6539–6547 (1997).

[14] S. Ekgasit, F. Yu, W. Knoll, "Fluorescence intensity in surface-plasmon field-enhanced fluorescence spectroscopy," Sens. Actuators B Chemical 104(2), 294–301 (2005).

[15] V. Chabot, Y. Miron, M. Grandbois et al., "Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth," Sens. Actuators B Chemical 174, 94–101 (2012).

[16] D. Cialla, A. M rz, R. B€ohme et al., "Surfaceenhanced Raman spectroscopy (SERS): Progress and trends," Anal. Bioanal. Chem. 403(1), 27–54 (2012).

[17] C. W. Lin, K. P. Chen, C. N. Hsiao et al., "Design and fabrication of an alternating dielectric multilayer device for surface plasmon resonance sensor," Sens. Actuators B Chemical 113(1), 169–176 (2006).

[18] S. G. Alasaga, N. Cansever, M. M. Aslan, "Sensitivity enhancement of coupled plasmonwaveguide resonance sensors with gold–silver– alumina layers," SPIE Photonics Europe, Int. Society for Optics and Photonics, 84243A-84243A-9 (2012).

[19] M. W. Meyer, K. J. McKee, V. H. T. Nguyen et al., "Scanning angle plasmon waveguide resonance Raman spectroscopy for the analysis of thin polystyrene films," J. Phys. Chem. C 116(47), 24987– 24992 (2012).

[20] H. Shi, Z. Liu, X. Wang et al., "A symmetrical optical waveguide based surface plasmon resonance biosensing system," Sens. Actuators B Chemical 185, 91–96 (2013).

[21] J. S. Maier, S. A. Walker, S. Fantini et al., "Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared," Opt. Lett. 19(24), 2062–2064 (1994).

[22] H. Lee, S. M. Dellatore, W. M. Miller et al., "Musselinspired surface chemistry for multifunctional coatings," Science 318(5849), 426–430 (2007).

[23] J. Yohannan, Y. J. Sepah, Q. D. Nguyen, "Platelet derived growth factor (PDGF) antagonism in neovascular age-related macular degeneration," Ophthalmology Management 53, AMD update (2011).

[24] Y. Liu, S. Xu, B. Tang et al., "Note: Simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering," Rev. Sci. Instrum. 81(3), 036105 (2010).

[25] Z. Liu, L. Yang, L. Liu et al., "Parallel-scan based microarray imager capable of simultaneous surface plasmon resonance and hyperspectral fluorescence imaging," Biosens. Bioelectron. 30(1), 180–187 (2011).

CHAN DU, LE LIU, JUN GUO, YONGHONG HE, JIHUA GUO, SHUQING SUN, HUI MA. A BIOSENSOR USING COUPLED PLASMON WAVEGUIDE RESONANCE COMBINED WITH HYPERSPECTRAL FLUORESCENCE ANALYSIS[J]. Journal of Innovative Optical Health Sciences, 2014, 7(1): 1450017.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!