红外与激光工程, 2016, 45 (7): 0718001, 网络出版: 2016-08-18   

空间相机用变形镜的支撑结构设计

Design of support structure for deformable mirror used on space camera
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
变形镜支撑结构自身性能的优劣将直接影响变形镜的像差校正能力。给出一种空间相机用变形镜的结构, 结合材料属性与加工工艺, 分析了不同结构形式支撑底座的特点, 发现采用碳纤维增强复合材料(CFRP)制作的实体式结构明显优于选用钛合金制作的筋板式结构, 指出支撑底座材料的比刚度以及支撑底座与反射镜材料之间的线胀系数差别分别是影响变形镜自重变形和热变形的主要因素。比较了不同的支撑方案, 发现采用背部三点支撑可以改善周边三点支撑时由重力因素导致的反射面边缘塌陷现象, 在z向重力下面形RMS值由15.38 nm降至4.17 nm, 降低了73%, 且热变形更加均匀, 4 ℃温升时的RMS值由3.68 nm降至3.22 nm, 降低了12.5%, 一阶频率也由1 513 Hz提高至1 982 Hz。这说明该变形镜结构的动、静态刚度及热稳定性均满足空间相机的应用要求。
Abstract
The aberration correcting ability of deformable mirror is directly affected by the performance of its supporting structure. A structure form of deformable mirror for space camera was described, and different structures of support base were analyzed from the aspect of material properties and manufacturing process, it proves that solid structure made of CFRP is superior to rib-board structure made of TC4, and stiffness ratio of support base material is the main factor of deformation caused by gravity, while the difference of CTE between the materials of support base and reflector affects thermal deformation mostly. Comparing with three-point edge support, the scheme of three-point back support was used to improve the collapse phenomenon caused by gravity, with the RMS value of gravity in z direction decreased by 73%, from 15.38 nm to 4.17 nm, and homogenize the thermal deformation, with the RMS value of 4 ℃ rise decreased by 12.5%, from 3.68 nm to 3.22 nm, and its first order frequency is also improved from 1 513 Hz to 1 982 Hz. This indicates that the dynamic and static stiffness and thermal stability of this deformable mirror satisfies the application requirement for space camera.
参考文献

[1] 段学霆, 周仁魁, 吴萌源, 等. 中心轴支撑大口径反射镜面形装调控制方法[J]. 光子学报, 2011, 40(S): 95-98.

    Duan Xueting, Zhou Renkui, Wu Mengyuan, et al. Distortion alignment method for center shaft supporting large aperture mirror[J]. Acta Photonica Sinica, 2011, 40(S): 95-98. (in Chinese)

[2] 孔林, 王栋, 姚劲松, 等. 轻型空间相机支撑桁架的精确温控[J]. 光学 精密工程, 2014, 22(3): 712-719.

    Kong Lin, Wang Dong, Yao Jinsong, el at. Precision temperature control for supporting trusses of lightweight space cameras[J]. Optics and Precision Engineering, 2014, 22(3): 712-719. (in Chinese)

[3] 徐宏, 关英俊. 大口径SiC轻量化反射镜组件的结构设计[J]. 红外与激光工程, 2014, 43(S): 83-88.

    Xu Hong, Guan Yingjun. Structural design of large aperture SiC mirror subassembly[J]. Infrared and Laser Engineering, 2014, 43(S): 83-88. (in Chinese)

[4] Walker D D, Beaucamp A T H, Bingham R G, et al. The precessions process for efficient production of aspheric optics for large telescopes and their instrumentation[C]//SPIE, 2003, 4842: 73-84.

[5] 齐光, 王书新, 李景林. 空间遥感器高体份SiC/Al复合材料反射镜组件设计[J]. 中国光学, 2015, 8(1): 99-106.

    Qi Guang, Wang Shuxin, Li Jinglin. Design of high volume fraction SiC/Al composite mirror in space remote sensor[J]. Chinese Optics, 2015, 8(1): 99-106. (in Chinese)

[6] 陈新东. 9点促动变形镜性能测试及在空间相机中的应用研究[J]. 光学学报, 2013, 33(10): 1023001.

    Chen Xindong. Testing of a 9-points deformable mirror and its application in space camera system[J]. Acta Optica Sinica, 2013, 33(10): 1023001. (in Chinese)

[7] 牛志峰, 郭建增, 周小红. 变形镜受热变形引起的波前畸变仿真及补偿[J]. 强激光与粒子束, 2015, 27(1): 011010.

    Niu Zhifeng, Guo Jianzeng, Zhou Xiaohong. Simulation and compensation of wavefront aberration caused by deformable mirror thermal deformation[J]. High Power Laser and Particle Beams, 2015, 27(1): 011010. (in Chinese)

[8] Laslandes M, Huggot E, Ferrari M, et al. Mirror actively deformed and regulated for applications in space: design and performance[J]. Optical Engineering, 2013, 52(9): 091803.

[9] 陈新东. 应用于空间相机的主动变形镜研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2012.

    Chen Xindong. Research on deformable mirror applied to space-borne camera [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2012. (in Chinese)

[10] 林旭东, 刘欣悦, 王建立. 137单元变形镜的性能测试及校正能力实验[J]. 光学 精密工程, 2013, 21(2): 267-273.

    Lin Xudong, Liu Xinyue, Wang Jianli, et al. Performance test and experiment of correction capability of 137-element deformable mirror[J]. Optics and Precision Engineering, 2013, 21(2): 267-273.

[11] 林旭东,刘欣悦,王建立. 961单元变形镜研制及性能测试[J]. 光学学报, 2013, 33(6): 0601001.

    Lin Xudong, Liu Xinyue, Wang Jianli, et al. Development and performance test of the 961-element deformable mirror [J]. Acta Optica Sinica, 2013, 33(6): 0601001. (in Chinese)

[12] 安源, 贾学志, 张雷, 等. 基于碳纤维复合材料的空间相机高比刚度主承力板优化设计[J]. 光学 精密工程, 2013, 21(2): 416-422.

    An Yuan, Jia Xuezhi, Zhang Lei, et al. Optimizing design of CFRP based main backbone with high stiffness ratio for space camera[J]. Optics and Precision Engineering, 2013, 21(2): 416-422. (in Chinese)

[13] 林再文, 刘永琪, 梁岩, 等. 碳纤维增强复合材料在空间光学结构中的应用[J]. 光学 精密工程, 2007, 15(8): 1181-1185.

    Lin Zaiwen, Liu Yongqi, Liang Yan, et al. Application of carbon fiber reinforced composite to space optical structure [J]. Optics and Precision Engineering, 2007, 15(8): 1181-1185. (in Chinese)

袁健, 沙巍, 任建岳. 空间相机用变形镜的支撑结构设计[J]. 红外与激光工程, 2016, 45(7): 0718001. Yuan Jian, Sha Wei, Ren Jianyue. Design of support structure for deformable mirror used on space camera[J]. Infrared and Laser Engineering, 2016, 45(7): 0718001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!