Frontiers of Optoelectronics, 2011, 4 (3): 243, 网络出版: 2012-09-21  

Silicon slow light photonic crystals structures: present achievements and future trends

Silicon slow light photonic crystals structures: present achievements and future trends
作者单位
Institut d'Electronique Fondamentale, Universite Paris-Sud, CNRS UMR 8622, Bat. 220, 91405 Orsay Cedex, France
摘要
Abstract
Slow light in planar photonic structures has attracted for some years an increasing interest due to amazing physical effects it allows or reinforces and to the degrees of freedom it raises for designing new optical functions. Controlling light group velocity is achieved through the use of periodical optical media obtained by nano-structuration of semiconductor wafers at the scale of light wavelength: the so-called photonic crystals. This article reviews present achievements realized in the field of slow light photonic bandgap structures, including the physical principles of slow light to the description of the most advanced integrated optical devices relying on it. Challenges and current hot topics related to slow light are discussed to highlight the balance between the advantages and drawbacks of using slow waves in integrated photonic structures. Then, future trends are described, which is focused on the use of slow wave slot waveguides for nonlinear optics and bio-photonic applications.
参考文献

[1] Pavesi L, Guillot G. Optical Interconnects: The Silicon Approach. Berlin: Springer, 2006

[2] Soref R. Silicon photonics: a review of recent literature. Chemistry and Materials Science, 2010, 2(1): 1-6

[3] Jones R, Liao L, Liu A S, Salib M, Rubin D, Coehn O, Samara-Rubio D, Paniccia M. Optical characterization of 1-GHz silicon based optical modulator. Proceedings of SPIE, 2004, 5451: 8-15

[4] Liu A S, Jones R, Liao L, Samara-Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 2004, 427(6975): 615-618

[5] Marris-Morini D, Le Roux X, Vivien L, Cassan E, Pascal D, Halbwax M, Maine S, Laval S, Fedeli JM, Damlencourt J F. Optical modulation by carrier depletion in a silicon PIN diode. Optics Express, 2006, 14(22): 10838-10843

[6] Marris-Morini D, Vivien L, Fedeli J M, Cassan E, Lyan P, Laval S. Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. Optics Express, 2008, 16(1): 334-339

[7] Liao L, Liu A, Basak J, Nguyen H, Paniccia M, Rubin D, Chetrit Y, Cohen R, Izhaky N. 40 Gbit/s silicon optical modulator for highspeed applications. Electronics Letters, 2007, 43(22): DOI 10.1049/el:20072253

[8] Rong H S, Liu A S, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M. An all-silicon Raman laser. Nature, 2005, 433(7023): 292-294

[9] Rong H S, Jones R, Liu A S, Cohen O, Hak D, Fang A, Paniccia M. A continuous-wave Raman silicon laser. Nature, 2005, 433(7027): 725-728

[10] Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M, Gaeta A L. Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006, 441(7096): 960-963

[11] Vallaitis T, Bogatscher S, Alloatti L, Dumon P, Baets R, Scimecca ML, Biaggio I, Diederich F, Koos C, Freude W, Leuthold J. Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguides geometries. Optics Express, 2009, 17(20): 17357-17368

[12] Wang X L, Lin C Y, Chakravarty S, Luo J D, Jen A K Y, Chen R T. Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides. Optics Letters, 2011, 36(6): 882-884

[13] Chan S, Horner R, Fauchet P M, Miller B L. Identification of gram negative bacteria using nanoscale silicon microcavities. Journal of the American Chemical Society, 2001, 123(47): 11797-11798

[14] Lee M, Fauchet P M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Optics Express, 2007, 15(8): 4530-4535

[15] Krauss T F. Slow light in photonic crystal waveguides. Journal of Physics D: Applied Physics, 2007, 40(9): 2666-2670

[16] Joannopoulos J D, Johnson S G, Winn J N, Meade R D. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton University Press, 2008

[17] Frandsen L H, Lavrinenko A V, Fage-Pedersn J, Borel B. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express, 2006, 14(20): 9444-9450

[18] Li J, White T P, O’Faolain L, Gomez-Iglesias A, Krauss T F. Systematic design of flat band slow light in photonic crystal waveguides. Optics Express, 2008, 16(9): 6227-6232

[19] Ebnali-Heidari M, Grillet C, Monat C, Eggleton B J. Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration. Optics Express, 2009, 17(3): 1628-1634

[20] Hao R, Cassan E, Kurt H, Le Roux X, Marris-Morini D, Vivien L, Wu H, Zhou Z, Zhang X. Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Optics Express, 2010, 18(6): 5942-5950

[21] Hao R, Cassan E, Le Roux X, Gao D, Do Khanh V, Vivien L, Marris-Morini D, Zhang X. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Optics Express, 2010, 18(16): 16309-16319

[22] Grillot F, Vivien L, Laval S, Pascal D, Cassan E. Size influence on the propagation loss induced by side-wall roughness in ultra-small SOI waveguides. IEEE Photonics Technology Letters, 2004, 16(7): 1661-1663

[23] Grillot F, Vivien L, Laval S, Cassan E. Propagation loss in singlemode ultra small square silicon-on-isulator optical waveguides. Journal of Lightwave Technology, 2006, 24(2): 891-896

[24] Monat C, Corcoran B, Pudo D, Ebnali-Heidari M, Grillet C, Pelusi M D, Moss D J, Eggleton B, White T P, O’Faolain L, Krauss T F. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE Journal on Selected Topics in Quantum Electronics, 2010, 16(1): 344-356

[25] O’Faolain L, Schulz S A, Beggs D M, White T P, Spasenovic M, Kuipers L, Morichetti F, Melloni A, Mazoyer S, Hugonin J P, Lalanne P, Krauss T F. Loss engineered slow light waveguides. Optics Express, 2010, 18(26): 27627-27638

[26] Askari M, Momeni B, Yegnanarayanan S, Eftekhar A, Adibi A. Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime. Proceedings of SPIE, 2008, 6901: 69011A

[27] Johnson S G, Bienstman P, Skorobogatiy M A, Ibanescu M, Lidorikis E, Joannopoulos J D. Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. Physical Review E, 2002, 66(6): 066608

[28] de Sterke C M, Walker J, Dossou K B, Botten L C. Efficient slow light coupling into photonic crystals. Optics Express, 2007, 15(17): 10984-10990

[29] Hugonin J P, Lalanne P, White T W, Krauss T F. Coupling into slow-mode photonic crystal waveguides. Optics Letters, 2007, 32(18): 2638-2640

[30] de Sterke C M, Dossou K B, White T P, Botten L C, McPhedran R C. Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes. Optics Express, 2009, 17(20): 17338-17343

[31] Gersen H, Karle T J, Engelen R J P, Bogaerts W, Korterik J P, van Hulst N F, Krauss T F, Kuipers L. Real-space observation of ultraslow light in photonic crystal waveguides. Physical Review Letters, 2005, 94(7): 073903

[32] Asano T, Kiyota K, Kumamoto D, Song B S, Noda S. Time-domain measurement of picosecond light-pulse propagation in a twodimensional photonic crystal-slab waveguide. Applied Physics Letters, 2004, 84(23): 4690-4692

[33] Jacobsen R, Lavrinenko A, Frandsen L, Peucheret C, Zsigri B, Moulin G, Fage-Pedersen J, Borel P. Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides. Optics Express, 2005, 13(20): 7861-7871

[34] Imhof A, Vos W L, Sprik R, Lagendijk A. Large effects near the band edges of photonic crystals. Physical Review Letters, 1999, 83(15): 2942-2945

[35] Vlasov Y A, O’Boyle M, Hamann H F, McNab S J. Active control of slow light on a chip photonic crystal waveguides. Nature, 2005, 438(7064): 65-69

[36] Jiang Y Q, Jiang W, Gu L, Chen X N, Chen R T. 80-micron interaction length photonic crystal waveguide modulator. Applied Physics Letters, 2005, 87(22): 221105

[37] Gu L, Jiang W, Chen X, Wang L, Chen R T. High-speed electrooptical silicon modulators based on photonic crystal waveguides. Proceedings of SPIE, 2007, 6477: 64770Z

[38] Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209-1211

[39] Di Falco A, O’Faolain L, Krauss T F. Photonic crystal slotted slab waveguides. Photonics and Nanostructures — Fundamental and Applications, 2008, 6(1): 38-41

[40] Brosi J M, Koos C, Andreani L C, Waldow M, Freude W. Highspeed low-voltage electro-optics modulator with a polymerinfiltrated silicon photonic crystal waveguide. Optics Express, 2008, 16(6): 4177-4191

[41] Caer C, Le Roux X, Do V K, Marris-Morini D, Izard N, Vivien L, Gao D, Cassan E. Strong light confinement in slot photonic crystal waveguide by Bragg corrugation. IEEE Photonics Technology Letters (in press)

Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Frontiers of Optoelectronics, 2011, 4(3): 243. Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Frontiers of Optoelectronics, 2011, 4(3): 243.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!