中国激光, 2018, 45 (3): 0305001, 网络出版: 2018-03-20   

圆艾里高斯涡旋光在各向异性非Kolmogorov湍流大气中的传输 下载: 505次

Propagation of Ring Airy Gaussian Vortex Beams in Anisotropic Non-Kolmogorov Turbulence Atmosphere
作者单位
南京理工大学电子工程与光电技术学院, 江苏 南京 210094
摘要
采用非均匀采样与功率谱反演法产生与湍流尺度相关的各向异性非Kolmogorov湍流随机相位屏,进而利用空间光调制器模拟研究圆艾里高斯涡旋光束在大气湍流中的漂移特性和轨道角动量态变化。数值模拟和光学实验结果均表明,圆艾里高斯涡旋光束的漂移值随光束衰减系数、光束主半径、大气湍流外尺度和传输距离的增大而增大,随湍流各向异性系数和光束拓扑荷值的增大而减小,并且在湍流幂律值为3.3附近有极大值。此外,通过对比圆艾里高斯涡旋光束经过大气湍流前后的干涉条纹图样,发现整数阶时拓扑荷值越小,光束经过湍流之后拓扑荷值稳定性就越好。
Abstract
The random phase screens in anisotropic non-Kolmogorov turbulence are generated by the non-uniform sampling and power spectral inversion method, and the spatial optical modulator is adopted to simulate the drift characteristics and the changes of the orbital angular momentum of ring Airy Gaussian vortex beams in atmospheric turbulence. Numerical simulation and optical experiment results show that the drift values of ring Airy Gaussian vortex beams increase with the increasing beam attenuation coefficients, radius of the primary ring, outer scale of the atmospheric turbulence, and transmission distance, and decrease with the increasing turbulent anisotropic coefficients and topological charge of the beams. There exists a maximum drift value near the turbulent power-law value of 3.3. Moreover, comparing the interference fringe patterns of ring Airy Gaussian bortex beams before and after propagating through the atmospheric turbulence, we find that the smaller the topological charge is, the better the stability of topological charge after beam propagating in the turbulence is.
参考文献

[1] Gao J, Zhu Y, Wang D, et al. Bessel-Gauss photon beams with fractional order vortex propagation in weak non-Kolmogorov turbulence[J]. Photonics Research, 2016, 4(2): 30-34.

[2] Eyyubolu H T. Scintillation behavior of Airy beam[J]. Optics & Laser Technology, 2013, 47: 232-236.

[3] Tao R M, Si L, Ma Y X, et al. Average spreading of finite Airy beams in non-Kolmogorov turbulence[J]. Optics and Lasers in Engineering, 2013, 51(4): 488-492.

[4] 王晓章, 唐峰, 原勐捷, 等. 实验模拟环形艾里光束在大气扰动中的光束漂移[J]. 中国激光, 2015, 42(8): 0813001.

    Wang X Z, Tang F, Yuan M J, et al. Experimental simulation of circular-Airy beam drift in atmospheric turbulence[J]. Chinese Journal of Lasers, 2015, 42(8): 0813001.

[5] 程振, 楚兴春, 赵尚弘, 等. 艾里涡旋光束在大气湍流中的漂移特性研究[J]. 中国激光, 2015, 42(12): 1213002.

    Cheng Z, Chu X C, Zhao S H, et al. Study of the drift characteristics of Airy vortex beam in atmospheric turbulence[J]. Chinese Journal of Lasers, 2015, 42(12): 1213002.

[6] Zhi D, Tao R, Zhou P, et al. Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence[J]. Optics Communications, 2017, 387: 157-165.

[7] Toselli I, Agrawal B, Restaino S. Light propagation through anisotropic turbulence[J]. Journal of the Optical Society of America A, 2011, 28(3): 483-488.

[8] Toselli I, Korotkova O, Xiao X, et al. SLM-based laboratory simulations of Kolmogorov and non-Kolmogorov anisotropic turbulence[J]. Applied Optics, 2015, 54(15): 4740-4744.

[9] Chen B, Chen C, Peng X, et al. Propagation of sharply autofocused ring Airy Gaussian vortex beams[J]. Optics Express, 2015, 23(15): 19288-19298.

[10] Clark T W, Offer R F, Franke-Arnold S, et al. Comparison of beam generation techniques using a phase only spatial light modulator[J]. Optics Express, 2016, 24(6): 6249-6264.

[11] Andrews L C, Phillips R L. Propagation of a Gaussian-beam wave in general anisotropic turbulence[J]. SPIE, 2014, 9224: 922402.

[12] Cui L, Xue B, Zhou F. Generalized anisotropic turbulence spectra and applications in the optical waves′ propagation through anisotropic turbulence[J]. Optics Express, 2015, 23(23): 30088-30103.

[13] Toselli I. Introducing the concept of anisotropy at different scales for modeling optical turbulence[J]. Journal of the Optical Society of America A, 2014, 31(8): 1868-1875.

[14] Toselli I, Korotkova O. General scale-dependent anisotropic turbulence and its impact on free space optical communication system performance[J]. Journal of the Optical Society of America A, 2015, 32(6): 1017-1025.

[15] Cheng W, Haus J W, Zhan Q. Propagation of vector vortex beams through a turbulent atmosphere[J]. Optics Express, 2009, 17(20): 17829-17836.

[16] Xiao X, Voelz D G, Toselli I, et al. Gaussian beam propagation in anisotropic turbulence along horizontal links: Theory, simulation, and laboratory implementation[J]. Applied Optics, 2016, 55(15): 4079-4084.

[17] Roddier N. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 1990, 129(10): 1174-1181.

[18] 吴晗玲, 严海星, 李新阳. 基于畸变相位波前分形特征产生矩形湍流相屏[J]. 光学学报, 2009, 29(1): 114-119.

    Wu H L, Yan H X, Li X Y. Generation of rectangular turbulence phase screens based on fractal characteristics of distorted wavefront[J]. Acta Optica Sinica, 2009, 29(1): 114-119.

[19] 蔡冬梅, 王昆, 贾鹏, 等. 功率谱反演大气湍流随机相位屏采样方法的研究[J]. 物理学报, 2014, 63(10): 104217.

    Cai D M, Wang K, Jia P, et al. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen[J]. Acta Physica Sinica, 2014, 63(10): 104217.

[20] 李玉杰, 朱文越, 饶瑞中. 非Kolmogorov大气湍流随机相位屏模拟[J]. 红外与激光工程, 2016, 45(12): 1211001.

    Li Y J, Zhu W Y, Rao R Z. Simulation of random phase screen of non-Kolmogorov atmospheric turbulence[J]. Infrared and Laser Engineering, 2016, 45(12): 1211001.

[21] 钱仙妹, 饶瑞中. 高斯光束大气闪烁空间分布的数值模拟研究[J]. 量子电子学报, 2006, 23(3): 320-324.

    Qian X M, Rao R Z. Spatial distribution of Gaussian-beam scintillation in atmosphere by numerical simulation[J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 320-324.

[22] 周洋, 李新忠, 王静鸽, 等. 涡旋光束拓扑荷值的干涉测量方法[J]. 河南科技大学学报(自然科学版), 2016, 37(3): 95-99.

    Zhou Y, Li X Z, Wang J G, et al. The method of interferometry to measure the topological charge of vortex beams[J]. Journal of Henan University of Science & Technology (Natural Science), 2016, 37(3): 95-99.

[23] 郭苗军, 曾军, 李晋红. 基于螺旋相位板的涡旋光束的产生与干涉[J]. 激光与光电子学进展, 2016, 53(9): 092602.

    Guo M J, Zeng J, Li J H. Generation and interference of vortex beam based on spiral phase plate[J]. Laser & Optoelectronics Progress, 2016, 53(9): 092602.

狄颢萍, 张淇博, 周木春, 辛煜, 赵琦. 圆艾里高斯涡旋光在各向异性非Kolmogorov湍流大气中的传输[J]. 中国激光, 2018, 45(3): 0305001. Di Haoping, Zhang Qibo, Zhou Muchun, Xin Yu, Zhao Qi. Propagation of Ring Airy Gaussian Vortex Beams in Anisotropic Non-Kolmogorov Turbulence Atmosphere[J]. Chinese Journal of Lasers, 2018, 45(3): 0305001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!